• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neue Ergebnisse zur Hantzsch-Synthese Darstellung und Reaktionen von 1, 4-Dihydropyridinen und 1, 2, 3, 4-Tetrahydropyrimidinen /

Buss, Dietrich, January 1981 (has links)
Thesis (doctoral)--Freie Universität Berlin, 1981.
12

Synthetic studies of naturally occurring molecules with interesting biological activities /

Takenaka, Norito. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, December 2002. / Includes bibliographical references. Also available on the Internet.
13

Synthèse stéréosélective de pipéridines et d'indolizidines polyhydroxylés : application vers la synthèse de la (+)- castanospermine

Labbé-Giguère, Nancy January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
14

Études vers la synthèse totale de l'indolizidine 223A

Beaudoin, Daniel January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
15

Études vers la synthèse totale de l'indolizidine 223A

Beaudoin, Daniel January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
16

Beta Adrenergic Antagonists and Antianginal Drugs

Stever, Lindsey M., Foltanski, Lindsey, Moore, Mallory L., Anderson, Carrie, Nelson, Brooklyn 01 January 2020 (has links)
Beta adrenergic antagonists and antianginal drugs are used with the aim to ultimately decrease mortality and enable patients to lead an improved quality of life by avoidance of anginal episodes. Each class of medications used for this purpose has a variety of actual or potential side effects associated with their use. Side effects and drug interactions involving these medications are discussed in the following chapter. Evidence presented should be used in the context of the patient populations described and may aid clinical decision making through avoidance or identification of actual or potential side effects. This review includes literature published from January 2019 to January 2020 written in English.
17

Synthèse d'hétérocycles azotés et oxygénés par catalyse acide et oxydation aodique.

Moreau, J. 23 October 2009 (has links) (PDF)
La catalyse acide pour la synthèse de structures hétérocycliques à visée thérapeutique est un outil puissant qui présente des avantages économiques certains. Nous décrivons ici la synthèse de 1,4-dihydropyridines non symétriques catalysée selon différentes approches, à partir d'aldéhydes -insaturés et de -énaminoesters. La synthèse de catalyseurs chiraux a ensuite permis l'obtention de ces molécules de manière énantiosélective. L'extension de cette réaction à des -cétoesters et -énaminones cycliques a également conduit à la formation de 2H-chroménones et tétrahydroquinolinones de manière régiosélective. Une seconde partie de ce mémoire traite de la synthèse de deux alcaloïdes naturels, la (R)-Crispine A et la (R)-Bernumicine, via l'utilisation d'-aminonitriles précurseurs, préparés par cyanation anodique. Utilisés dans une séquence diastéréosélective d'alkylation-réduction, ces derniers ont permis l'obtention des composés finaux avec des excès énantiomériques supérieurs à 90%.
18

Studies directed towards the synthesis of secu'amamine A

Padilla Acevedo, Angela Isabel 21 February 2014 (has links)
Herein is described our synthetic studies towards the synthesis of secu'amamine A, a member of the Securinega alkaloids. The first chapter describes the isolation, biological significance and previous synthesis of secu'amamine A. Chapter 2 discusses our proposed biogenetic origin of secu'amamine A from allosecurinine and the model studies to support the intermediacy of the putative aziridinium ion. Chapter 3 discusses our synthetic approach to the formation of rings A and C, as well as investigations on the regioselective functionalization of 1,2-dihydropyridines. Chapter 4 discusses the synthesis of ring D from ring D' and the transformations of our advanced intermediates with different carbamate protective groups. Chapter 5 consists of experimental details and characterization data for all new compounds. / text
19

Investigation into the Molecular Pharmacology of α1 and α3 Glycine Receptors

Xuebin Chen Unknown Date (has links)
The glycine receptor (GlyR) mediates fast inhibitory neurotransmission in the central nervous system (CNS). Although GlyR α1 subunits are widely distributed, α3 subunits are found only on spinal cord pain sensory neurons where they mediate central inflammatory pain sensitization. Thus, the α3 subunit is a potential therapeutic target for anti-inflammatory analgesia. It is yet to be understood why α3 subunits are represented in these synapses. Thus, α3 subunit-specific modulators are required both as therapeutic leads and as pharmacological probes for basic research. The Thesis, which consists of three independent studies, investigated the molecular pharmacology of three classes of compounds at GlyRs, especially those containing the α3 subunit. The dihydropyridines (DHPs), nifedipine and nicardipine, modulate native GlyRs at micromolar concentrations. Nicardipine has a biphasic potentiating and inhibitory effect, whereas nifedipine causes inhibition only. The first study investigated the molecular mechanism by which these compounds inhibit recombinant GlyRs. The rate of onset of inhibition in the open state was accelerated by pre-application of DHP in the closed state, with the degree of acceleration proportional to the concentration of pre-applied DHP. This implies a non-inhibitory binding site close to the DHP inhibitory site. DHP inhibition was use-dependent and independent of glycine concentration, consistent with a pore-blocking mode of action. DHP sensitivity was abolished by the G2’A mutation, providing a strong case for DHP binding site in the pore. Nifedipine exhibited an approximately 10-fold higher inhibitory potency at α1-containing relative to α3-containing receptors, whereas nicardipine was only weakly selective for α1-containing GlyRs. The differential sensitivities of nifedipine and nicardipine for different GlyR isoforms suggest that DHPs may be a useful resource to screen as pharmacological tools for selectively inhibiting different synaptic GlyR isoforms. To date there are few compounds known to pharmacologically discriminate between α1 and α3 subunit-containing GlyRs. The second study stemmed from an observation that β-alanine and taurine act as weak partial agonists of α3 GlyRs but as strong partial agonists at α1 GlyRs. Using chimeras of α1 and α3 subunits, we identified the relatively structurally divergent M4 transmembrane domain and C-terminal tail as a specific determinant of the efficacy difference. As mutation of individual non-conserved M4 residues had little influence on agonist efficacies, the reduced efficacy of α3 GlyRs is most likely a distributed effect of all non-conserved M4 residues. Given the lack of contact between M4 and other transmembrane domains, the efficacy differences are probably mediated by differential interactions between the respective M4 domains and the surrounding lipid environment. The strong influence of M4 primary structure on partial agonist efficacy suggests that the relatively poorly conserved α3 GlyR M4 domain may be a promising domain to target in the search for α3 GlyR-specific modulators. β-carbolines have recently been shown to inhibit glycine receptors in a subunit-specific manner. The third study screened four structurally similar β-carbolines, harmane (HM), tryptoline (TP), norharmane (NHM) and 6-methoxyharmalan (MH) at recombinantly expressed α1, α1β, α2 and α3 glycine receptors. The four compounds exhibited only weak subunit-specificity, rendering them unsuitable as pharmacological probes. Because they displayed competitive antagonist activity, we investigated the roles of known glycine binding residues in coordinating the four compounds. The structural similarity of the compounds, coupled with the differential effects of C-loop mutations (T204A, F207Y) on compound potency, implied direct interactions between variable β-carboline groups and mutated residues. Mutant cycle analysis employing HM and NHM revealed a strong pairwise interaction between the HM methyl group and the C-loop in the region T204 and F207. These results, which define the orientation of the bound β-carbolines, were supported by molecular docking simulations. The information may also be relevant to understanding the mechanism of β-carboline binding to GABAAR where they are potent pharmacological probes. The identification of compounds that specifically abolish α3 GlyR-mediated currents should provide a useful means to investigate the physiological roles of this subunit. Drugs that potently and selectively enhance α3-subtype GlyR function may potentially serve as lead compounds since α3-subtype GlyRs have emerged as a potential therapeutic target for pain treatment. Results from studies forming the Thesis have identified several structural elements that might be useful for developing novel α3 subunit-specific drugs in the future.
20

Synthèse stéréosélective de pipéridines substituées

Lemire, Alexandre January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.1028 seconds