• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact du derme et d'une irradiation chronique aux rayons ultraviolets sur la réparation des dimères cyclobutyliques de pyrimidines dans les kératinocytes humains

Dorr, Marie 03 February 2021 (has links)
La lumière solaire constitue le principal facteur de risque des cancers de peau non mélanocytaires (NMSC). L'effet génotoxique de la lumière solaire est dû aux dommages dans l'ADN induits par les rayonnements ultraviolets (UV). Les rayons UVB longs (290-315 nm) sont les principaux responsables de l'initiation et de la promotion des NMSC qui prennent naissance dans les kératinocytes épidermiques. En effet, l’absorption directe des photons d’UVB par l’ADN conduit à la génération de deux principaux types de dommages, les dimères cyclobutyliques de pyrimidines (CPD) et les photoproduits de pyrimidine (6-4) pyrimidone (6-4PP). Les CPD sont les plus abondants et sont hautement mutagènes. Ils sont responsables des mutations de transitions C → T au niveau des sites dipyrimidiniques, les mutations signatures observées dans les cancers de peau. Les cellules possèdent différents mécanismes pour éviter la conversion des CPD en mutations, à savoir, l’arrêt du cycle cellulaire, la réparation des dommages dans l'ADN par le système de réparation par excision de nucléotides (NER) et la mort cellulaire par apoptose. L’importance de la NER dans la prévention des cancers de peau est bien démontrée par le fait qu’une déficience en protéines de la NER, comme chez les patients atteints de Xeroderma Pigmentosum (XP), entraîne une incidence jusqu’à 2000 fois plus élevée de cancers de peau. De nombreux facteurs influencent la NER et une meilleure compréhension de ces derniers pourrait conduire au développement de nouvelles stratégies de prévention contre les cancers de peau. La peau est un assemblage complexe de cellules et de matrice dans lequel la communication entre les composants épidermiques et dermiques est essentielle pour de nombreux mécanismes cutanés. En utilisant des peaux reconstruites dérivées uniquement de fibroblastes et de kératinocytes primaires humains, nous avons analysé l’impact des composants dermiques sur l’efficacité de réparation des CPD épidermiques. Nous avons montré que l’élimination des CPD dans les kératinocytes est positivement influencée par la présence d'un derme et nous avons déterminé que cet effet du derme sur les kératinocytes proviendrait de molécules sécrétées. En étudiant le sécrétome, nous avons découvert que la cytokine CXCL5 (ou ENA78 - Epithelial neutrophil-activating peptide 78) possède un patron d'expression unique : elle est pratiquement absente du milieu de culture des peaux reconstruites, comparativement au milieu de culture de fibroblastes et de kératinocytes seuls. En modulant les niveaux de CXCL5 dans les milieux de culture de kératinocytes, nous avons montré que CXCL5 était un inhibiteur de la réparation des CPD. Cette première étude décrit l'impact des molécules sécrétées par le derme sur la réparation iii des CPD épidermiques et met en lumière un nouveau rôle de CXCL5 dans la réparation des dommages induits par les rayons UV. L’environnement immédiat des kératinocytes n’est pas le seul facteur qui peut influencer la réparation des CPD, le régime d’irradiation a également un impact sur cette efficacité d’élimination des lésions. Jusqu’à présent, l'efficacité de la NER a été largement étudiée après une seule exposition aiguë aux rayons UV. Cependant, l'utilisation d’une irradiation unique n'est pas représentative de l'exposition solaire humaine, qui est plutôt constituée d’une multitude d'irradiations répétées. Dans ce travail, nous avons donc exposé des cellules épidermiques à un régime d’irradiation chronique composé de faibles doses d’UVB (CLUV) afin de déterminer l’impact de cette irradiation sur la réparation NER. Nous avons montré que le traitement CLUV entraîne l’accumulation de CPD résiduels, qui ne sont pas réparés mais plutôt tolérés et dilués lors de la réplication de l’ADN. Nous avons également constaté que le prétraitement CLUV réduisait la capacité d'élimination des nouveaux dommages sans induire de sensibilité accrue à la mort cellulaire. Enfin, en utilisant nos données expérimentales, nous avons élaboré un modèle théorique pour prédire l’induction, la dilution et la réparation des CPD épidermiques lors d’une irradiation chronique aux rayons UVB. Nos résultats montrant que les kératinocytes accumulent des dommages dans l'ADN après des irradiations chroniques, constituent un facteur important à prendre en compte, car l'accumulation de CPD non réparés pourrait entraîner une augmentation des mutations dans les kératinocytes. Dans l’ensemble, ces travaux soulignent l’importance d’utiliser des modèles plus complexes, visant une meilleure représentation physiologique, pour mieux comprendre les réponses de la peau à l’exposition solaire. / Skin exposure to solar light is the main risk factor for non-melanoma skin cancers (NMSC). The genotoxic effect of sunlight is attributed to DNA damage induced by ultraviolet (UV) radiations. Long UVB wavelengths (290-315 nm) are the main responsible for NMSC initiation and promotion that occur in epidermal keratinocytes. Indeed, the direct absorption of UVB photons by DNA leads to the generation of the two main types of UV-induced DNA damage, i.e. cyclobutane pyrimidine dimers (CPD) and (6-4) pyrimidine-pyrimidone photoproducts (6-4PP). CPD are the most abundant and are highly mutagenic. They are responsible for the C → T transition mutations at dipyrimidine sites, the signature mutation found in sun-related skin cancers. Skin cells use different mechanisms to avoid the conversion of UVB-induced CPD into skin cancer driver mutations, i.e. cell cycle arrest, DNA damage removal by nucleotide excision repair (NER) pathway and cell death by apoptosis. The importance of NER for skin cancer prevention is well demonstrated by the fact that a deficiency in NER proteins, such as in Xeroderma Pigmentosum (XP) patients, leads to an increase of up to 2,000-fold in skin cancer occurrence. Many factors influence NER and a better understanding of those factors might lead to new prevention strategies against skin cancer. Skin is a complex assembly of cells and matrix in which a crosstalk between epidermal and dermal components is essential for many cutaneous mechanisms. Using self-assembled tissue-engineered skin equivalents derived from human primary fibroblasts and keratinocytes, we have analyzed the impact of dermal components on epidermal CPD repair efficiency. We showed that CPD repair in keratinocytes is positively influenced by the presence of the dermis and we brought evidence that this dermal effect comes from secreted molecules. We then investigated the secretome and found that the cytokine CXCL5 (also known as ENA78 - Epithelial neutrophil-activating peptide 78) has a unique expression pattern, i.e. is virtually absent in the culture medium of reconstructed skin, when compared to the media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in keratinocytes culture medium, we have shown that CXCL5 is an inhibitor of CPD repair. This work outlines the impact of the secreted dermal components on epidermal UV-induced DNA damage repair and shed light on a novel role of CXCL5 in CPD repair. The immediate environment of the keratinocytes is not the only factor that can influence the CPD repair, the irradiation protocol also has an impact on this damage removal. Until now, v NER efficiency has been extensively studied after a single acute UVB exposure. However, the use of single UVB irradiation is not representative of the human solar exposure, which is rather a multitude of repeated irradiations than a single acute one. In this work, we thus exposed keratinocytes to a chronic low-dose of UVB (CLUV) protocol to determine the impact of this irradiation procedure on CPD removal. We showed that the CLUV treatment leads to the accumulation of residuals CPD. Those residual CPD are not repaired but rather tolerated and diluted through DNA replication. We also found that a CLUV pre-treatment reduces CPD removal rate of newly generated damage without inducing a higher sensitivity to UV-induced cell death. Finally, using our experimental data, we derived a theoretical model to predict CPD induction, dilution and repair that occur in keratinocytes when chronically irradiated with UVB. These results showing that keratinocytes accumulate DNA damage after chronic irradiations is an important factor to consider since the accumulation of unrepaired CPD might lead to an increase of skin cancer driver mutations formation. Taking together, this work outlines the importance of more relevant and physiological models to study the skin response to solar exposure.
2

Cartographie des dimères cyclobutyliques de pyrimidines (DCP) induits par les UVA et étude des effets de certains gènes de réparation des mésappariements et du gène P53 muté sur la réparation par excision de nucléotides des DCP

Rochette, Patrick J. 11 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005 / Les cancers cutanés sont associés à la formation des dimères cyclobutyliques de pyrimidine (DCP) générés par les ultraviolets (UV) du soleil. Nos résultats indiquent que les transversions T-->G retrouvées suite aux UVA sont dues aux DCP formés majoritairement sur les TT. Nous avons également démontré que, contrairement au dogme établi, les protéines réparant les mésappariements n'influencent pas la réparation des DCP. p53 a indéniablement une influence sur la réparation des DCP. Cependant, la lignée SW480, contenant un gène p53 double-muté, est fonctionnelle en réparation par excision de nucléotides des DCP. Normalement, un stress est nécessaire à l'activation des effecteurs de p53. Cependant, la protéine p53 double-mutée des SW480 active constitutivement p21, un effecteur de p53. L'activation des protéines réparant les DCP par p53 se fait probablement de la même façon que p21. L'éclaircissement de ces mécanismes a amené une meilleure compréhension de l'induction des cancers.

Page generated in 0.0844 seconds