• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Material aspects of exploitation of dental composites based on dimethacrylate resins / Aspects matériaux de l'utilisation des composites dentaires basés sur des résines dimelhacrylate

Kleczewska, Joanna 22 November 2011 (has links)
L’objectif de cette étude est de comprendre comment la morphologie des composites dentaires basés sur la résine diméthacrylate peut influer sur les propriétés des prosthèses dentaires. Les expériences ont été menées selon deux directions I ) Analyse des échantillons commerciaux 2) préparation des composites avec des nouveaux renforcements. La morphologie, le comportement tribologique et les propriétés mécaniques des couches superficielles ont été déterminés. Certains composites montrent une résistance à l’abrasion accrue pendant la première heure des mesures tribologiques. Ceci indique l’existence d’une couche superficielle de nature différente que le corps. Ce morphologie bimodale conduit à un meilleur arrangement des particules renforçant, résultant en une résistance à l’usure important et une ténacité élevée.Wollastonité est une alternative intéressante comme renforçant. L’ajout des agents bactéricide est efficace contre S. mutans, mais les propriétés mécaniques de ce composites doivent être améliorés. / The aim of this study was an attempt to clarify, how the morphology of dimethacrylate-based dental composite affects the properties of dental fillings. The experiments were carried out bidirectionally: I). The analysis of commercial samples; 2). Preparation ofhome made composites with using of new fillers.Morphology, tribological behavior. mechanical properties of surface layer and bactericidal action of composites were characterized. Some composites exhibit an increased resistance to abrasion during the first hour of tribological measurements. It proves the existence of the “surface layer” of a different nature than the bulk of material.The ‘bimodal’ morphology favors the best packing of filler particles in the matrix, resulting in higher wear resistance and fracture toughness of composites. Wollastonite is an interesting alternative to the commonly used fillers. Addition of bactericidal agents is effective against S. mutans, however, mechanical characteristics of these composites require fine-tuning.
2

Structure and Properties Of dimethacrylate-Styrene Resins and Networks

Burts, Ellen 04 December 2000 (has links)
One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is the dimethacrylate matrix resin. An investigation of the relationships between the chemical structures and properties of these dimethacrylate/styrene networks has been conducted. Oligomer number average molecular weights of the polyhydroxyether ranging from 700 to 1200g/mole were studied with systematically varied styrene concentrations to assess the effects of crosslink density and chemical composition on glass transition temperatures, toughness, tensile properties and matrix strain. Network densities have been estimated from measurements of the rubbery moduli at Tg + 40°C. Within this rather small range in vinyl ester molecular weight, toughness of the resultant networks improved tremendously as the vinyl ester oligomer Mn was increased from 700g/mole to 1200g/mole due to improvements in the resistance to crack propagation. As styrene concentration was increased along all series' of materials, brittleness increased even though the molecular weight between crosslinks increased. This was attributed to the inherent relative brittleness of the polystyrene chemical structure relative to the polyhydroxyether component. This may also be related to the reactivity ratios dictating styrene and vinyl ester sequence length and warrants further investigation. As expected, the volume contraction upon cure also decreased significantly as styrene was decreased, and thus residual cure stresses may be reduced in fiber-reinforced composites. Vickers microhardness values decreased for each of the series when molecular weight increased and styrene content decreased. Two different cure procedures were compared to assess the effects of conversion on the physical and mechanical properties. All mechanical properties investigated (i.e. fracture toughness, tensile strength, and microhardness) were dependent on the cure procedure. Materials cured at 140°C were harder, more brittle, had lower elongations and higher rubbery moduli than those cured at 25°C followed by a 93°C postcure. A maximum in the degree of conversion occurred with increasing polymerization temperature and can be explained by the competition between the chemical reaction and molecular mobility. The overall shrinkage per moles of vinyl groups converted was the same when the materials were cured at 25°C or 140°C. However, in the room temperature cured samples, there was essentially no further densification of the network during postcure, regardless of the postcure temperature. A mono-methacrylate analogue of the dimethacrylate terminated poly(hydroxyether) oligomer was synthesized and copolymerized with styrene to study the effects of chain transfer during elevated temperature reactions. / Ph. D.
3

Synthesis, Characterization and Properties of Vinyl Ester Matrix Resins

Li, Hui III 28 May 1998 (has links)
Vinyl ester oligomers diluted with styrene are important matrix resins for thermosetting polymer composites. A major objective of this work has been to study the chemistry and kinetics of the cure reactions of vinyl ester resins at elevated curing temperatures, which are consistent with typical composite processing conditions. The crosslinking reaction of vinyl ester resins was studied by FTIR and the loss of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1) were followed independently. A small background absorbance overlapping the absorbance at 943 cm-1 was subtracted from all spectra collected as a function of reaction time to quantify conversions. Copolymerization reactivity ratios of styrene and terminal methacrylates on vinyl ester oligomers were calculated to be rs = 0.36 ± 0.05 and rm = 0.24 ± 0.1 from early conversion data obtained at 140°C on a series of resins with systematically increasing levels of styrene. The composition data were analyzed using the integrated form of the copolymerization equation and assuming a terminal reactivity model to predict copolymer compositions throughout the reactions. These curves agreed well with the experimental data even at high conversion levels. Another important part of this research was to study structure-property relationships of vinyl ester resins. Characteristics of vinyl ester resins and networks such as shrinkage, viscosity, crosslink density, glass transition temperature, gel swelling, and toughness have been studied. The shrinkage of vinyl ester resins during cure was calculated according to density measurements to be 4% - 10% depending on styrene content. It was found that the chain length of vinyl ester oligomers strongly affects the properties of the networks. For vinyl ester resins with longer lengths (Mn = 1000 g/mol), crosslinked networks have higher fracture toughness values and lower Tg's. Finally, the synthesis, cure reactions and toughness of a new low viscosity vinyl ester resin were also investigated in this work. The new oligomer has a structure with which the hydroxyl groups on the backbone are replaced by methyl groups. They could be processed without a diluent. The cure reactions of the new resin were studied by FTIR, DSC and 13C-NMR. / Ph. D.
4

Reinforcement of Ethylene Propylene Rubber (EPR) and Ethylene Propylene Diene Rubber (EPDM) by Zinc Dimethacrylate

Wysocki, Clare L. 17 May 2006 (has links)
No description available.
5

Inter-Relationships Between Chemistry, Network Structure and Properties of Chain Growth Dimethacrylate Thermosets

Starr, Brian Craig 07 December 2001 (has links)
Dimethacrylate oligomers diluted with styrene reactive diluents (so-called vinyl ester resins) are becoming increasingly important for composites in applications such as transportation vehicles, printed wiring boards and civil infrastructure. This research has focused on the generation and comparative analysis of glassy dimethacrylate networks as a function of oligomer structure, the type of reactive diluent, composition and curing conditions. A novel cycloaliphatic dimethacrylate was synthesized and its networks were compared to oligomeric structures containing dimethacrylates derived from epoxy terminated oligomers (from bisphenol-A and epichlorohydrin). Both types of dimethacrylates co-cured with methyl methacrylate exhibited increases in Mc and fracture toughness as the concentration of methyl methacrylate was increased. By contrast, networks prepared with a styrene diluent displayed reduced toughness with increasing styrene and Mc. Due to the need for long-term composite environmental durability, the effects of moisture and exposure to sunlight are important. Thus, these materials were exposed to ultraviolet light on a rotating drum for 225 days and the exposure was carefully monitored. Initial results from this study suggest that both the networks comprising the aromatic dimethacrylate/styrene structures as well as the cycloaliphatic analogues cured with methyl methacrylate undergo reductions in rubbery moduli upon aging under these conditions. X-Ray photoelectron spectroscopy shows higher levels of oxidation on the bisphenol-A vinyl ester networks cured with styrene, especially those containing dimethylaniline and cobalt naphthenate as accelerators. Scanning electron microscopy indicates a smooth surface for the cycloaliphatic networks cured with methyl methacrylate and a pitted surface for the aromatic networks cured with styrene. Water absorption is also higher for the cycloaliphatic vinyl ester; however, curing with a longer alkyl chain methacrylate (butyl methacrylate) decreases the water absorption to levels comparable to those cured with styrene. / Ph. D.
6

The Chemistry of Dimethacrylate-Styrene Networks and Development of Flame Retardant, Halogen-Free Fiber Reinforced Vinyl Ester Composites

Rosario, Astrid Christa 12 December 2002 (has links)
One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low temperature viscosity so that fabrication of composites via Vacuum Assisted Resin Transfer Molding (VARTM) is possible. The first binder system investigated was a polycaprolactone layered silicate nanocomposite, which was prepared via intercalative polymerization. Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) data indicated a mixed morphology of exfoliated and intercalated structures. The mechanical properties and the normalized peak heat release rates were comparable to the neat vinyl ester resin. Alternative binder systems possessing inherent flame retardance were also investigated. A series of binders comprised of novolac, bisphenol A diphosphate, and montmorillonite clay were developed and dispersed into the vinyl ester matrix. Cone calorimetry showed reductions in the peak heat release rate comparable to the brominated resin. / Ph. D.
7

Polymeric Monolithic Stationary Phases for Capillary Hydrophobic Interaction Chromatography

Li, Yuanyuan 06 October 2010 (has links) (PDF)
Rigid poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] (Poly(HEA-co-PEGDA) monoliths were synthesized inside 75-µm i.d. capillaries by one-step UV-initiated copolymerization using methanol and ethyl ether as porogens. The optimized monolithic column was evaluated for hydrophobic interaction chromatography (HIC) of standard proteins. Six proteins were separated within 20 min with high resolution using a 20 min elution gradient, resulting in a peak capacity of 54. The performance of this monolithic column for HIC was comparable or superior to the performance of columns packed with small particles. Monoliths synthesized solely from PEGDA were also found to show excellent performance in HIC of proteins. Continuing efforts showed that rigid monoliths could be synthesized from PEGDA or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths for HIC of proteins. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The single-monomer synthesis approach clearly improves column-to-column reproducibility.The highly crosslinked monolith networks resulting from single crosslinking monomers were found to enhance the surface area of the monolith and concentrations of mesopores. Thus, monolithic columns were developed from four additional crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol = 2 or 4) and pentaerythritol diacrylate monostearate (PDAM) for RPLC of small molecules. Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution using all monolithic columns. Porogen selection for the BADMA and PDAM was investigated in detail with the intention of obtaining data that could possiblly lead to a rational method for porogen selection.
8

Bioconjugation of RGD peptides on injectable PEGDMA for enhancing biocompatibility

Thorendal, Victor January 2019 (has links)
A cerebral aneurysm is a weakened area of an artery in the brain, creating an abnormal expansion. Recent research for treatment is utilizing a photopolymerizable hydrogel as a possible operation for injection in situ. This paper aimed to achieve bioconjugation of peptides on a PEGDMA polymer network (using the photoinitiator PEG-BAPO) to form a biocompatible photopolymerizable hydrogel, without compromise to any of its mechanical attributes. Achieving cell adhesion to the hydrogel surface is a critical requirement as that could drive the growth of endothelium between aneurysm and artery, to considerably enhance its sustainability and decrease the risk of inflammation. The hydrogel was synthesized by functionalizing RGD with a PEG-spacer and co-polymerize it with PEGDMA using UV-radiation to create an intertwined cross-linking network. Samples of various peptide concentrations were studied in cell culture to analyze cell adhesion, followed by mechanical tests to identify possible deviations. A subsequent study was established to create a dynamic prototype as a quantifiable replication of a hydrogel inside an aneurysm in vivo. The model was designed in SolidWorks and connected with an Ibidi sticky-Slide to roughly replicate a cerebral aneurysm connected to an artery with space to introduce a hydrogel sample.
9

In vitro anti-bacterial activity of titanium oxide nano-composites containing benzalkonium chloride and chlorhexidine gluconate

Atbayga, Abdalla Mohammed Ali January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Biomedical Technology In the Faculty of Health and Wellness Sciences At Cape Peninsula University of Technology 2013 / Newly developed and commercial dental resins which are commonly used nowadays have to be tested for their antimicrobial susceptibility. The purpose of this in vitro study was to investigate the antimicrobial activity of a titanium oxide (TiO2) nano-composite which was prepared with different antibacterial substances and used as restoratives in dentistry to combat certain selected bacteria that are considered the principle causes of some tooth diseases, for example, tooth decay and to prevent unsuccessful dental restoration. The TiO2 nano-composite was prepared and divided into four groups: The first group was an untreated TiO2 nano-composite. The second group was silane-treated TiO2 nano-composite. The third group was treated TiO2 nano-composite which was combined with chlorhexidine gluconate (CHxG). The fourth group was treated TiO2 nano-composite which was combined with benzalkonium chloride (BzCl). Five of the selected bacteria were grown overnight in Petri dishes. Four of them, namely, Escherichia coli (E. coli) ATCC 11775, Staphylococcus aureus (S. aureus) ATCC 12600, Enterococcus faecalis (E. faecalis) ATCC 29212, and Pseudomonas aeruginosa (P. aeruginosa) ATCC 10145, were grown on Müller-Hinton Agar (MHA). Streptococcus mutans (S. mutans) ATCC 25175 was grown on Brain Heart Infusion (BHI) agar. All these bacteria were tested against the TiO2 nano-composite, and incubated for 24 hours at 37°C, except S. mutans, which was incubated separately and exposed to CO2. It was placed into a CO2 water-jacketed incubator in an atmosphere of 5% CO2 for 24 hours at 37°C. The obtained results showed that neither of the groups of TiO2 nano-composites, (untreated TiO2 nano-composite and treated TiO2 nano-composite) exhibited antimicrobial activity against the pathogens. Only preparations of TiO2 nano-composites at a concentration of 3 %m/m of both CHxG and BzCl showed antimicrobial activity against S. aureus. Antimicrobial activity against S. mutans, E. coli, P. aeruginosa, E. faecalis and S. aureus, were only realized at a concentration of 10 %m/m for both CHxG and BzCl..
10

In vitro anti-bacterial activity of titanium oxide nano-composites containing benzalkonium chloride and chlorhexidine gluconate

Atbayga, Abdalla Mohammed Ali January 2013 (has links)
Thesis (MTech (Biomedical Technology))--Cape Peninsula University of Technology, 2013. / Newly developed and commercial dental resins which are commonly used nowadays have to be tested for their antimicrobial susceptibility. The purpose of this in vitro study was to investigate the antimicrobial activity of a titanium oxide (Ti02) nano-composite which was prepared with different antibacterial substances and used as restoratives in dentistry to combat certain selected bacteria that are considered the principle causes of some tooth diseases, for example, tooth decay and to prevent unsuccessful dental restoration. The Ti02 nano-composite was prepared and divided into four groups: The first group was an untreated Ti02 nano-composite. The second group was silane-treated Ti02 nano-composite. The third group was treated Ti02 nano-composite which was combined with chlorhexidine gluconate (CHxG). The fourth group was treated Ti02 nano-composite which was combined with benzalkonium chloride (BzCI).

Page generated in 0.0801 seconds