Spelling suggestions: "subject:"dinámica real"" "subject:"finámica real""
1 |
Análisis dinámico y numérico de familias de métodos iterativos para la resolución de ecuaciones no lineales y su extensión a espacios de BanachGarcía Maimo, Javier 28 November 2017 (has links)
Since the appearance of Newton-Rapshon's method more than 300 years ago, iterative methods have become almost unassailable in most branches of science. The development of computing has made it possible to solve problems of increasing complexity, and this has been accompanied by the need for more efficient and reliable methods. Several tools of discrete dynamics can be used to perform a dynamic analysis of methods and families of iterative methods for solving equations and nonlinear systems, with the aim of extracting information about their stability and classifying them.
In this memory a biparametric family of iterative methods is designed that contains the schemes of Ostrowski and Chun as particular cases. The convergence of the family is analyzed and extended to make it suitable for the resolution of systems of nonlinear equations. Dynamic tools are used and developed to carry out a scalar and multivariate study, and problems are solved applied to verify the results of the dynamic study. Finally, the semilocal convergence in Banach spaces of the Chun method is determined.
Chapter 2 sets out the basic concepts from which the rest of the chapters will be developed. The Newton method and its derivative free version, the Steffensen method, are transferred to the multivariable case, and the tools of complex and real dynamics are applied to them.
In the Chapter 3 a dynamic study of King's family of iterative methods is performed for the resolution of nonlinear equations. The family is applied on a generic quadratic polynomial, and members with a more stable behavior are selected.
In the Chapter 4 a biparametric family of iterative methods is designed combining the methods of Ostrowski and Chun and an extension of the family to the multivariable case is done by the use of the operator divided differences. Numerical tests are performed on academic problems and applied to confirm the theoretical results.
In the Chapter 5 a dynamic study of the Ostrowski-Chun biparametric family is made and the most stable members are applied to the solution of the Bratu equation, whereas in Chapter 6 a real dynamic study of the family is made in the multivariable case, and in this case the most stable members apply to the resolution of Fischer's equation.
In the Chapter 7 the semilocal convergence of the well-known method of Chun, member of the Ostrowski-Chun family, is proved, and the results obtained in the resolution of an integral Hammerstein-type equation are proved. Finally, conclusions and open lines of research are presented. / Desde la aparición del método de Newton-Rapshon hace más de 300 años los métodos iterativos se han hecho poco menos que imprescindibles en la mayoría de las ramas de la ciencia. El desarrollo de la computación ha permitido resolver problemas de complejidad cada vez mayor, y este hecho ha venido acompañado de la necesidad de disponer de métodos más eficientes y fiables. Varias herramientas de la dinámica discreta se pueden utilizar para realizar un análisis dinámico de métodos y familias de métodos iterativos para la resolución de ecuaciones y sistemas no lineales, con el objetivo de extraer información sobre su estabilidad y clasificarlos.
En esta Tesis Doctoral se diseña una familia biparamétrica de métodos iterativos que contiene los esquemas de Ostrowski y Chun como casos particulares. Se analiza la convergencia de la familia y se extiende para hacerla apta para la resolución de sistemas de ecuaciones no lineales. Se utilizan y desarrollan herramientas dinámicas para llevar a cabo un estudio escalar y multivariable, y se resuelven problemas aplicados para comprobar los resultados del estudio dinámico. Finalmente, se determina la convergencia semilocal en espacios de Banach del método de Chun.
En el Capítulo 2 se exponen los conceptos básicos a partir de los cuales se van a desarrollar el resto de capítulos. Se transfieren al caso multivariable el método de Newton y su versión libre de derivada, el método de Steffensen, y se van aplicando sobre ellos las herramientas de la dinámica compleja y de la real.
En el Capítulo 3 se realiza un estudio dinámico de la familia de métodos iterativos de King para la resolución de ecuaciones no lineales. Se aplica la familia sobre un polinomio cuadrático genérico, y se seleccionan los miembros que presentan un comportamiento más estable.
En el Capítulo 4 se diseña una familia biparamétrica de métodos iterativos combinando los métodos de Ostrowski y Chun y se hace una extensión de la familia al caso multivariable mediante el uso del operador diferencias divididas. Se realizan pruebas numéricas en problemas académicos y aplicados para confirmar los resultados teóricos.
En el Capítulo 5 se hace un estudio dinámico de la familia biparamétrica de Ostrowski-Chun y se aplican los miembros más estables a la solución de la ecuación de Bratu, mientras que en el Capítulo 6 se hace un estudio dinámico real de la familia en el caso multivariable, y en este caso los miembros más estables se aplican a la resolución de la ecuación de Fischer.
En el Capítulo 7 se prueba la convergencia semilocal del conocido método de Chun, miembro de la familia de Ostrowski-Chun, y se comprueban los resultados obtenidos en la resolución de una ecuación integral de tipo Hammerstein. Finalmente, se presentan las conclusiones y las líneas abiertas de investigación / Des de l'aparició del mètode de Newton-Rapshon fa més de 300 anys els mètodes iteratius s'han fet poc menys que imprescindibles en la majoria de les branques de la ciència. El desenvolupament de la computació ha permès resoldre problemes de complexitat cada vegada més gran, i aquest fet ha vingut acompanyat de la necessitat de disposar de mètodes més eficients i fiables. Diverses eines de la dinàmica discreta es poden utilitzar per realitzar una anàlisi dinàmica de mètodes i famílies de mètodes iteratius per a la resolució d'equacions i sistemes no lineals, amb l'objectiu d'extreure informació sobre la seva estabilitat i classificar-los.
En aquesta tesi doctoral es dissenya una família biparamétrica de mètodes iteratius que conté els esquemes de Ostrowski i Chun com casos particulars. S'analitza la convergència de la família i s'estén per fer-la apta per a la resolució de sistemes d'equacions no lineals. S'utilitzen i desenvolupen eines dinàmiques per dur a terme un estudi escalar i multivariable, i es resolen problemes aplicats per comprovar els resultats de l'estudi dinàmic. Finalment, es determina la convergència semilocal en espais de Banach del mètode de Chun.
En el capítol 2 s'exposen els conceptes bàsics a partir dels quals es desenvoluparan la resta de capítols. Es transfereixen al cas multivariable el mètode de Newton i la seva versió lliure de derivada, el mètode de Steffensen, i es van aplicant sobre ells les eines de la dinàmica complexa i de la real.
En el capítol 3 es realitza un estudi dinàmic de la família de mètodes iteratius de King per a la resolució d'equacions no lineals. S'aplica la família sobre un polinomi quadràtic genèric, i se seleccionen els membres que presenten un comportament més estable.
En el capítol 4 es dissenya una família biparamétrica de mètodes iteratius combinant els mètodes d'Ostrowski i Chun i es fa una extensió de la família al cas multivariable mitjançant l'ús de l'operador diferències dividides. Es realitzen proves numèriques en problemes acadèmics i aplicats per confirmar els resultats teòrics.
En el capítol 5 es fa un estudi dinàmic de la família biparamétrica d'Ostrowski-Chun i s'apliquen els membres més estables a la solució de l'equació de Bratu, mentre que en el capítol 6 es fa un estudi dinàmic real de la família en el cas multivariable, i en aquest cas els membres més estables s'apliquen a la resolució de l'equació de Fischer.
En el capítol 7 es prova la convergència semilocal del conegut mètode de Chun, membre de la família de Ostrowski-Chun, i es comproven els resultats obtinguts en la resolució d'una equació integral de tipus Hammerstein. Finalment, es presenten les conclusions i les línies obertes d'investigació. / García Maimo, J. (2017). Análisis dinámico y numérico de familias de métodos iterativos para la resolución de ecuaciones no lineales y su extensión a espacios de Banach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/91483
|
2 |
Efficient Numerical Methods for Solving Nonlinear ProblemsMoscoso Martínez, Marlon Ernesto 16 December 2024 (has links)
Tesis por compendio / [ES] La resolución de ecuaciones y sistemas de ecuaciones no lineales es fundamental en muchas disciplinas científicas y de ingeniería, incluyendo la física, la química, la biología, la economía y la informática. Los métodos numéricos son cruciales para resolver estas ecuaciones debido a su complejidad, que a menudo resulta en múltiples soluciones o en la ausencia de ellas, lo que hace que los métodos analíticos tradicionales sean inadecuados. Esta investigación se centra en el desarrollo y análisis de nuevos esquemas iterativos para resolver ecuaciones y sistemas de ecuaciones no lineales, enfatizando la convergencia, la estabilidad y la eficiencia computacional. Como parte de esta investigación se publicaron tres artículos clave. El primer artículo introduce una novedosa familia de métodos iterativos de dos pasos derivada de un esquema de Newton amortiguado, que incluye un paso adicional de Newton con una función de peso y una derivada "congelada". Esta familia, inicialmente una clase de cuatro parámetros con convergencia de primer orden, se convierte en una familia de un solo parámetro con convergencia de tercer orden, que además muestra una estabilidad y eficiencia excepcionales, validadas mediante pruebas numéricas. El segundo artículo presenta un nuevo método iterativo de tres pasos, inicialmente una familia de tres parámetros de cuarto orden que acelera a una familia de un solo parámetro de sexto orden. La convergencia, la dinámica compleja y el comportamiento numérico de este método son estudiados a fondo, identificando miembros estables adecuados para problemas prácticos. El tercer artículo extiende la familia de sexto orden a sistemas de ecuaciones no lineales, creando un esquema de un solo parámetro altamente eficiente. Los análisis dinámicos y numéricos confirman la convergencia, estabilidad y aplicabilidad de esta familia extendida para problemas de gran escala. La investigación tiene como objetivo superar las limitaciones de algunos métodos existentes, ofreciendo soluciones robustas y eficientes para ecuaciones y sistemas no lineales. El documento está estructurado para cubrir el desarrollo, análisis y validación de estos métodos, proporcionando recomendaciones específicas para su aplicación práctica en varios dominios científicos y de ingeniería. / [CA] La resolució d'equacions i sistemes d'equacions no lineals és fonamental en moltes disciplines científiques i d'enginyeria, incloent la física, la química, la biologia, l'economia i la informàtica. Els mètodes numèrics són crucials per a resoldre aquestes equacions a causa de la seua complexitat, que sovint resulta en múltiples solucions o en l'absència d'elles, la qual cosa fa que els mètodes analítics tradicionals siguen inadequats. Aquesta investigació se centra en el desenvolupament i anàlisi de nous esquemes iteratius per a resoldre equacions i sistemes d'equacions no lineals, emfatitzant la convergència, l'estabilitat i l'eficiència computacional. Com a part d'aquesta investigació es van publicar tres articles clau. El primer article introdueix una nova família de mètodes iteratius de dos passos derivada d'un esquema de Newton esmorteït, que inclou un pas addicional de Newton amb una funció de pes i una derivada "congelada". Aquesta família, inicialment una classe de quatre paràmetres amb convergència de primer ordre, es converteix en una família d'un sol paràmetre amb convergència de tercer ordre, que a més mostra una estabilitat i eficiència excepcionals, validats mitjançant proves numèriques. El segon article presenta un nou mètode iteratiu de tres passos, inicialment una família de tres paràmetres de quart ordre que accelera a una família d'un sol paràmetre de sisè ordre. La convergència, la dinàmica complexa i el comportament numèric d'aquest mètode són estudiats a fons, identificant membres estables adequats per a problemes pràctics. El tercer article amplia la família de sisè ordre a sistemes d'equacions no lineals, creant un esquema d'un sol paràmetre altament eficient. Els anàlisis dinàmics i numèrics confirmen la convergència, estabilitat i aplicabilitat d'aquesta família ampliada per a problemes de gran escala. La investigació té com a objectiu superar les limitacions d'alguns mètodes existents, oferint solucions robustes i eficients per a equacions i sistemes no lineals. El document està estructurat per a cobrir el desenvolupament, anàlisi i validació d'aquests mètodes, proporcionant recomanacions específiques per a la seua aplicació pràctica en diversos dominis científics i d'enginyeria. / [EN] The resolution of non-linear equations and systems is fundamental in various scientific and engineering fields, including physics, chemistry, biology, economics, and computer science. Numerical methods are crucial for solving these equations due to their complexity, which often results in multiple or no solutions, rendering traditional analytical methods inadequate. This research focuses on developing and analyzing new iterative schemes for solving non-linear equations and systems, emphasizing convergence, stability, and computational efficiency. Three key papers were published as part of this research. The first paper introduces a novel family of two-step iterative methods derived from a damped Newton scheme, which includes an additional Newton step with a weight function and a "frozen" derivative. This family, initially a four-parameter class with first-order convergence, becomes a single-parameter family with third-order convergence, which also exhibits exceptional stability and efficiency, validated through numerical tests. The second paper presents a new three-step iterative method, initially a three-parameter fourth-order family, which accelerates to a single-parameter sixth-order family. This method's convergence, complex dynamics, and numerical behavior are thoroughly studied, identifying stable members suitable for practical problems. The third paper extends the sixth-order family to systems of non-linear equations, creating a highly efficient single-parameter family. Dynamic and numerical analyses confirm the convergence, stability, and applicability of this extended family for large-scale problems. The research aims to overcome the limitations of some existing methods, offering robust and efficient solutions for non-linear equations and systems. The document is structured to cover the development, analysis, and validation of these methods, providing specific recommendations for their practical application in various scientific and engineering domains. / Moscoso Martínez, ME. (2024). Efficient Numerical Methods for Solving Nonlinear Problems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/212946 / Compendio
|
Page generated in 0.0804 seconds