• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tailoring the physical properties of energetic materials

Ward, Daniel W. January 2017 (has links)
Energetic materials are a class of material that have large amounts of chemical energy stored within their molecular structure. This energy is released upon decomposition, generally in the form of rapidly expanding, hot gases. They are therefore used for a wide range of applications such as; mining, military, and space exploration, and there is therefore a strong desire to improve the overall performance and safety of such materials. On account of reduced sensitivity to initiation by shock and impact, 2,4-dinitroanisole (DNAN) is a potential replacement for 2,4,6-trinitrotoluene (TNT) in melt-cast formulations for military applications. However, up to 15 % irreversible growth of DNAN has been previously observed upon thermal cycling and is a key reason why DNAN has not yet been universally accepted as a replacement for TNT. DNAN exhibits a complex system of polymorphism. One particular transition from DNAN-II to DNAN-III, which occurs at 266 K, has been observed in these studies to cause 8 - 10 % growth of DNAN-II pellets when temperature cycled for 30 cycles between 256 K and 276 K. What was even more concerning was the appearance of cracking of DNAN pellets after being temperature cycled. Doping the crystal structure of DNAN-II with related molecules, such as 2,4-dinitrotoluene or 2,4-dinitroaniline, was investigated in order to probe how steric and electronic factors affect the transition. The addition of varying amounts of 2,4-dinitroaniline suppressed this transition to varying extents and ultimately as low as 150 K with 10 mol% 2,4-dinitroaniline, and potentially eliminated entirely. This doped material has been designated as phase-stabilised DNAN (PS-DNAN). Temperature cycling of PS-DNAN was conducted over the same 256-276 K range, and this material showed no evidence of irreversible growth compared to undoped DNAN pellets, on account of suppression of the II-III transition. The production of PS-DNAN is therefore a possible route to avoiding problematic irreversible growth in DNAN formulations. Melt-casting of DNAN in a sealed environment consistently results in the metastable form-II, which has proven to be stable for in excess of 32 weeks. However, exposure to seeds of form-I, either via deliberate or accidental seeding, rapidly converted the material to the thermodynamically more stable form-I. This transition was accelerated by increasing temperature which rapidly converted pellets of DNAN-II to DNAN-I. When DNAN-I pellets were temperature cycled, they did not undergo a transition to form-III, and as a result did not illustrate irreversible growth. This presents another approach to avoiding problematic growth in DNAN-based materials. Whilst being one of the most widely used oxidisers in propellant formulations, ammonium perchlorate (AP) has several issues; the formation of porous ammonium perchlorate (PAP) can seriously affect the sensitivity of propellants, the hygroscopicity of AP makes handling and manufacture of formulations difficult, and spherical AP exhibits poor binding properties to the polymer binders used in propellant formulations. Several different approaches were taken to combat these issues. Co-crystallisation of AP was attempted in order to produce new AP co-crystals with reduced reactivity towards the formation of PAP. A theoretical based approach using COSMOtherm was used for rapid screening and selection of potential co-formers to be used in lab-based co-crystallisation trials. Co-crystallisation was attempted using multiple stoichiometries and multiple solvents by solvent evaporation, cooling crystallisation, and Resonant Acoustic Mixing methods. Unfortunately no new co-crystals were obtained, presumably on account of the ionic nature of AP which makes co-crystallisation difficult. The mass of untreated AP increased by 0.027% in a humid environment (90% RH) due to the uptake of water, which resulted in significant caking and hence hindering the processability of AP. In an attempt to counteract the hygroscopicity and improve the processability of AP, particles of AP were coated in graphene nanoplatelets using the technique of Resonant Acoustic Mixing. Low mixing energy (G-force) (30 G) resulted in poor coating of AP, but the flowability of this mixure after exposure to moisture was significantly enhanced, most probably as a result of graphene acting as an effective lubricant. Higher mixing energy (90-100 G) was required to break up agglomerates of graphene nanoplatelets and resulted in AP particles efficiently coated with graphene (APGR). Differential scanning calorimetry showed that the energy released upon decomposition of APGR was greater than pure AP, or AP mixed with graphene, due to the intimacy of the AP particle surface and the graphene coating.
2

Biotransformation and photolysis of 2,4-dinitroanisole, 3-nitro-1,2,4-triazol-5-one, and nitroguanidine

Schroer, Hunter William 01 May 2018 (has links)
Nitroaromatic explosives have contaminated millions of acres of soil and water across the globe since World War II with known mutagenic, carcinogenic, and ecotoxicological effects. Recently, the U.S. Army initiated a shift away from traditional explosive compounds, such as trinitrotoluene (TNT) and hexahydrotrinitrotriazine (RDX), towards new, insensitive high explosive formulations. The new formulations approved for use include “IMX-101” and “IMX-104,” which contain 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). These mixtures are less prone to accidental detonation making storage, transport, and implementation of these formulations safer for soldiers. Furthermore, initial research indicates that these compounds are less toxic than the older analogues. Despite the apparent benefits, the new explosives have higher solubility (approximately 3-300 times) than the compounds they are replacing, and NTO and NQ are fairly recalcitrant to aerobic biodegradation. The refractory nature and high solubility of the compounds raises concerns about leaching and water contamination considering the previous scale of environmental contamination from production and use of legacy explosives, while feasible strategies for cleaning up the new chemicals from soil and water have not been developed. Therefore, there is a critical need for understanding of the mechanisms of biodegradation these compounds will undergo in the environment and in engineered systems. In addition, a number of questions remain about the photochemistry of the compounds and how they may transform in sunlit surface water. Accordingly, this thesis examines biological transformations of DNAN and NTO in vegetative, fungal, and bacterial organisms, as well as photolysis of NTO and NQ in aqueous solution and DNAN in plant leaves. I identified 34 novel biotransformation products of DNAN using stable-isotope labeled DNAN and high resolution mass spectrometry. Most identified biotransformation products were the result of a nitro-group reduction as the first metabolic step. Arabidopsis plants, a Rhizobium bacterium, and a Penicillium fungus all further metabolized DNAN to produce large, conjugated compounds, and no mineralization was observed in the systems studied. All three organisms reduced both para- and ortho-nitro groups of DNAN, with a dramatic preference for ortho reduction. I found that photodegradation of DNAN and its plant metabolites within Arabidopsis leaves could impact the phytoremediation of DNAN and other contaminants. Soil slurries acclimated to nitroaromatic wastewater degraded DNAN with and without carbon and nitrogen amendments and NTO with added carbon. Organisms capable of degrading DNAN and NTO were isolated, and NTO was transformed to urea, amino-triazolone, and hydroxyl-triazolone. Photolysis of NTO sensitized singlet oxygen formation and yielded hydroxyl-triazolone, nitrite, nitrate, and ammonium. The rate of photolysis of NTO increased over the neutral pH range, and natural organic matter quenched the photolysis of NTO. An unknown volatile product accumulated in the headspace of sealed reactors after NTO photolysis. Singlet oxygen degraded NTO and formed nitrite in stoichiometric yield. Photolysis of NQ produced nitrite and nitrate, but at high pH, the reaction occurred much faster than at neutral pH, and the mass balance of inorganic nitrogen was much lower. Further work should be done to investigate the mechanisms of and products from NTO and NQ photolysis.
3

Environmental Fate, (Bio)transformation, and Toxicology of 2,4-dinitroanisole (DNAN) in Soils and Wastewater Sludge

Olivares Martinez, Christopher Ignacio January 2016 (has links)
Insensitive munition compounds (IMC) are an emerging class of explosives that are less susceptible to accidental explosions compared to the conventional explosives they will be replacing. An IMC that has been incorporated in several explosives formulations is 2,4-dinitroanisole (DNAN). As the manufacture, storage, and use of these compounds increases, the expected releases in natural and engineered systems might pose an environmental hazard to public health and ecosystems. To date there is little information on the environmental fate and toxicology of DNAN. However, nitroaromatic compounds are known to be toxic, mutagenic and difficult to completely biodegrade. In order to study the fate and (bio)transformation of DNAN, microcosm studies with soils and anaerobic wastewater sludge were performed to determine (bio)transformation pathways and key factors influencing (bio)conversion. Transformation was enhanced in anaerobic conditions, in particular when exogenous electron donor was added. Abiotic transformation (in heat-killed soil) was also significant and dominated transformation reactions in soils that were not amended with exogenous electron donor. The organic carbon content of soils was a key factor that correlated to the anaerobic biotransformation rate. Having identified (bio)transformation products using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, an overall pathway of (bio)transformation was devised and consistent with nitro-group reduction to form aromatic amines. During the nitro-group reduction, reactive products (e.g. nitroso-intermediates) coupled with amines to form azo-dimers and oligomers. Subsequent transformation pathways included N-alkylation, N-acetylation, and stepwise demethoxylation of these oligomers. The assessment of the toxicity of DNAN and its (bio)transformation products was performed utilizing microbial toxicity assays and ecotoxicity evaluation with zebrafish (Danio rerio) embryos. Overall DNAN severely inhibited methanogens (IC₅₀ = 41 μM ), the bioluminescent marine bacterium Aliivibrio fischeri utilized in the Microtox test (IC₅₀ = 57 μM), and nitrifiers (IC₅₀ = 49 μM). Reduced aromatic amine products in general were less toxic than DNAN with the exception of 2-methoxy-5-nitroaniline and 3-nitro-4-methoxyaniline, which were similar in toxicity to some of the test organisms as DNAN. Azo-oligomer surrogates were as toxic or more toxic than DNAN, although at trace levels they significantly stimulated activity. N-acetylated amines were found to have by far the lowest toxicity to microorganisms. In zebrafish embryos, the (bio)transformation product or surrogates 3-nitro-4-methoxyaniline and 2,2'-dimethoxy-4,4'-azodianiline caused developmental abnormalities (each with lowest observable effect level of 6.4 μM). An integrated approach which monitored (bio)transformation product mixture profile in parallel with their toxicity to microbial and zebrafish toxicity was used to characterize toxicity during the time course of the anaerobic (bio)transformation of DNAN. Enhanced inhibition of methanogenic activity and zebrafish mortality were associated with the onset of dimer formation indicating they were being mostly impacted by reactive intermediates formed early in the biotransformation of DNAN. Further accumulation of oligomers was associated with a decrease toxicity. On the other hand, A. fischeri bioluminescence became more and more inhibited as the oligomers formed, indicating different responses depending on target organism. Taken globally, the results indicate that DNAN can be readily transformed in soils and wastewater sludge forming both highly toxic (e.g. azo-oligomers) and non-toxic intermediates (e.g. N-acetylated 2,4-diaminoanisole). Depending on target organism, the prolonged formation of oligomer mixtures either resulted in detoxification or recovery of activity.
4

The Investigation of the Environmental Fate and Transport of 2,4- dinitroanisole(DNAN) in Soils

Arthur, Jennifer, Arthur, Jennifer January 2017 (has links)
New explosive compounds that are less sensitive to shock and high temperatures are being tested on military ranges as replacements for 2, 4, 6-trinitrotoluene (TNT) and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). One of the two compounds being tested is 2, 4-dinitroanisole (DNAN), which has good detonation characteristics and is one of the main ingredients in a suite of explosive formulations being tested. Data on the fate and transport of DNAN is needed to determine its potential to reach groundwater and be transported off base, a result which could create future contamination problems on military training ranges and trigger regulatory action. In this study, I measured how DNAN in solution interacts with different types of soils from across the United States. I conducted kinetic and equilibrium batch soil adsorption experiments, saturated column experiments with DNAN and dissolution and transport studies of insensitive munitions (IMX-101, IMX -104), which include DNAN, 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), under steady state and transient conditions. In the rate studies, change in DNAN concentration with time was evaluated using the first order kinetic equation. Solution mass-loss rate coefficients ranged between 0.0002 h-1 and 0.0068 h-1. DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L kg-1, and Freundlich coefficients between 1.3 and 34 mg1-n Ln kg-1. Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil. In saturated miscible-displacement experiments, it was shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Dissolution miscible-displacement experiments demonstrated that insensitive munition compounds dissolved in order of aqueous solubility as indicated by earlier lab and outdoor dissolution studies. The sorption of NTO and NQ was low, while RDX, HMX, and DNAN all adsorbed to the soils. DNAN transformed in soils with formation of amino-reduction products, 2- ANAN and 4-ANAN. Adsorption parameters determined by HYDRUS-1D generally agreed with batch and column study adsorption coefficients for pure NTO and DNAN. The magnitudes of retardation and transformation observed in these studies result in significant attenuation potential for DNAN in soils, which would reduce risk of groundwater contamination.
5

Abiotic Reduction Transformations of Recalcitrant Chlorinated Methanes, Chlorinated Ethanes, and 2,4-Dinitroanisole By Reduced Iron Oxides at Bench-Scale

Burdsall, Adam C. 07 June 2018 (has links)
No description available.
6

Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils

Arthur, Jennifer D., Mark, Noah W., Taylor, Susan, Šimunek, J., Brusseau, M.L., Dontsova, Katerina M. 04 1900 (has links)
The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bio-availability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002 h(-1) and 0.0068 h(-1). DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3 L g(-1), and Freundlich coefficients between 1.3 and 34 mg(1-n) L-n kg(-1). Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to contribute to a reduced risk for contamination of ground water from soil residues.
7

Mineral Surface-Mediated Transformation of Insensitive Munition Compounds

Khatiwada, Raju, Khatiwada, Raju January 2016 (has links)
Abiotic transformation of compounds in the natural environment by metal oxides plays a significant a role in contaminant fate and behavior in soil. The ability of birnessite, ferrihydrite and green rust to abiotically transform insensitive munitions compounds (IMCs) parent (2,4 dinitroanisole [DNAN] and 3-nitro-1,2,4-triazol-5-one [NTO]), and daughter products (2-methoxy-5-nitro aniline [MENA], 2,4-diaminoanisole [DAAN]of DNAN; and 5-amino-1, 2, 4-triazol-3-one [ATO] of NTO) was studied in batch reactors under strictly controlled pH and ionic strength. The objectives of the study were to (i) assess the abiotic transformation potential of soluble DNAN, MENA, DAAN, NTO and ATO by birnessite, ferrihydrite and green rust, and (ii) identify inorganic reaction products. The study was carried out at metal oxide solid to IMC solution ratios (SSR) of 0.15, 1.5 and 15 g kg⁻¹ for birnessite and ferrihydrite and 10 g kg⁻¹ for green rust. Aqueous samples were collected at time intervals between 0 to 3 days after the reaction initiation and analyzed using HPLC with UV detection. Results indicated that DNAN was resistant to oxidation by birnessite and ferrihydrite at given solid to solution ratios. MENA was susceptible to rapid oxidation by birnessite (first order rate constant, 𝑘=1.36 h⁻¹ at 15 g kg⁻¹ SSR). The nitro groups from MENA largely mineralized to nitrite (NO₂⁻). In contrast, ferrihydrite did not oxidize MENA. DAAN was susceptible to oxidation by both birnessite and ferrihydrite, but about a six times higher oxidation rate was observed with birnessite (𝑘=1.18 h⁻¹) as compared to ferrihydrite (𝑘=0.22 h⁻¹) at an SSR of 1.5 g kg⁻¹. There was a complete loss of DAAN from solution after 5 min with birnessite at an SSR 15 g kg⁻¹ (𝑘≥90.5 h⁻¹). CO₂ evolution experiments indicate mineralization of 15 and 12 % of carbon associated with MENA and DAAN, respectively; under aerobic conditions with birnessite at an SSR of 15 g kg⁻¹. NTO was resistant to oxidation by birnessite and ferrihydrite at any SSR; however, there was slight initial loss from solution upon reaction with ferrihydrite at 0.15 and 1.5 g kg⁻¹ SSR and complete loss at 15 g kg⁻¹ SSR due to adsorption. ATO was susceptible to oxidation by birnessite and sorption by ferrihydrite. The first order rate constants (𝑘) for ATO with birnessite at 0.15 and 1.5 g kg⁻¹ SSR are 0.04 and 3.03 h⁻¹ respectively. There was complete loss of ATO from solution with birnessite at 15 g kg⁻¹ SSR (𝑘 ≥ 90.2 h⁻¹) within 5 min of reaction. Transformation products analysis revealed urea, CO₂ and N₂ as major reaction products with 44 % urea recovery and recovery of 51.5 % of ATO carbon as CO₂ and 47.8 % of ATO nitrogen as N₂ at 15 g kg⁻¹ SSR. The oxidation of ATO in the presence of birnessite was found to be independent of dissolved O₂. The results indicate that ATO, the major reductive (bio)transformation product of NTO, is readily oxidized by birnessite in soil. NTO was found strongly sorbed to ferrihydrite as compared to that of ATO. The results of the green rust experiment indicate rapid abiotic reduction of parent compounds NTO and DNAN to their reduced aminated daughter products. NTO was generally reductively transformed to 5-amino-1, 2, 4-triazol-3-one (ATO) within 10 min and completely reacted in 20 min. DNAN was rapidly transformed to its reduced daughter products MENA and 4-methoxy-5-nitroaniline (iMENA). The reduction occurred with a distinctive, staggered regioselectivity. Over the first 10 min, the para-nitro group of DNAN was selectively reduced, generating iMENA. Thereafter the ortho-nitro group was preferentially reduced, generating MENA. Both iMENA and MENA were subsequently transformed to the final reduction product DAAN within 1 day. X-ray absorption near edge spectroscopy data suggested oxidative transformation of green rust to lepidocrocite-like mineral forms, accounting for 94 % of the mineral products in the case of NTO reaction as compared to 62 % in the case of DNAN. The results taken as whole suggest that complete abiotic transformation of IMCs could be achieved by coupled stepwise green rust and birnessite treatments.

Page generated in 0.0465 seconds