• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 315
  • 126
  • 87
  • 45
  • 39
  • 35
  • 24
  • 24
  • 13
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 911
  • 273
  • 191
  • 178
  • 111
  • 99
  • 89
  • 86
  • 80
  • 79
  • 77
  • 72
  • 71
  • 68
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Design and Fabrication of MIM Diodes with Single and Multi-Insulator Layers

Aydinoglu, Ferhat 08 October 2013 (has links)
A Metal-Insulator-Metal (MIM) diode is a device that can achieve rectification at high frequencies. The main objective of this research work is designing, fabricating, and characterizing thin film MIM diodes with single and multi-insulator layers. 
Cr/Al₂O₃/Cr and Pt/Al₂O₃/Al MIM diodes have been fabricated to show the impact of the materials on the current-voltage (I-V) curve. It is illustrated that the Cr/Al₂O₃/Cr MIM diode has a symmetrical I-V curve while the Pt/Al₂O₃/Al MIM diode has a very asymmetrical I-V curve. 
MIM diodes with single and multi-insulator layers have been fabricated to demonstrate the impact of the number of insulators on a MIM diode’s performance. It is found that by repeating two insulator layers with different electron affinities and keeping the total insulator thickness the same, the asymmetry and nonlinearity values show a significant improvement in a MIM diode. While the asymmetry of the diode with a double insulator layer (MI²M) is 3, it is 90 for the diode with a quadra insulator layer (MI⁴M), which 30 times greater than that of the MI²M diode.
52

Modelling diode-pumped solid-state lasers.

Bernhardi, Edward H. January 2008 (has links)
This thesis consists of three main parts. An introduction to diode-pumped solid-state lasers, thermal modelling of solid-state lasers and rate-equation modelling of solid-state lasers. The first part explains the basic components and operation principles of a typical diode-end-pumped solid-state laser. The stimulated emission process, solid-state laser gain media, various pump geometries and a basic end-pumped laser resonator configuration are among the topics that are explained. Since thermal effects are one of the main limiting factors in the power-scaling of diode-pumped solid-state lasers, the second part of this thesis describes numerical and analytical thermal models that determine the thermal lens and thermally induced stresses in a laser crystal. As a first step, a time-independent numerical thermal model which calculates the three-dimensional temperature distribution in the laser crystal is implemented. In order to calculate the time dependent thermally induced stresses in a laser crystal, a coupled thermal-stress finite element analysis model was implemented. Even though some steady-state analytical solutions for simple crystal geometries do exist, the finite element analysis approach was taken so that the time dependent thermally induced stresses could be calculated for birefringent crystals of various geometries. In order to validate the numerical results, they are compared to experimental data and analytical solutions where possible. In the last part, the population dynamics inside the laser gain medium are described and modelled with a quasi-three-level rate-equation model. A comprehensive spatially resolved rate-equation model is developed and discussed. In order to simplify the implementation of the rate-equation model as a computer simulation, the spatial dependence of the laser parameters is ignored so that the model reduces to a singleelement plane-wave model. The simplified rate-equation model is implemented and solved numerically. The model is applied to a four-level CW and Q-switched Nd:YLF laser as well as a quasi-three-level QCW Tm:GdV04 laser. The models' predictions are thoroughly verified with experimental results and also with analytical solutions where possible. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2008.
53

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers

Zhu, Jiayuan 15 November 2013 (has links)
Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon quantum dots as an emission layer, and metal oxides as charge transport layers. Sputtering deposition conditions for the nickel and zinc oxides were explored in order to balance deposition rate with minimal roughness, optical absorption, and electrical resistivity. Devices displaying characteristic diode current-voltage behavior were routinely produced, although most showed significant reverse saturation current due to the presence of shunts. Current-voltage behavior of devices made in the same batch showed high repeatability, however variations in device performance was observed between batches while the parameters of synthesis were kept constant. Some devices were observed to emit orange-colored light, consistent with photoluminescence behavior of the silicon quantum dots. Photomultiplier tube measurements shows a turn-on voltage of 5V and an exponential increase in light emission with voltage increase.
54

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers

Zhu, Jiayuan 15 November 2013 (has links)
Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon quantum dots as an emission layer, and metal oxides as charge transport layers. Sputtering deposition conditions for the nickel and zinc oxides were explored in order to balance deposition rate with minimal roughness, optical absorption, and electrical resistivity. Devices displaying characteristic diode current-voltage behavior were routinely produced, although most showed significant reverse saturation current due to the presence of shunts. Current-voltage behavior of devices made in the same batch showed high repeatability, however variations in device performance was observed between batches while the parameters of synthesis were kept constant. Some devices were observed to emit orange-colored light, consistent with photoluminescence behavior of the silicon quantum dots. Photomultiplier tube measurements shows a turn-on voltage of 5V and an exponential increase in light emission with voltage increase.
55

All-optical switching in semiconductor laser devices

Pegg, Steven Ian January 2000 (has links)
No description available.
56

Fabrication and Characterization of Metal- Insulator -Metal Diode and Gray scale Lithography

Alhazmi, Manal January 2013 (has links)
The objective of this thesis is to successfully design, fabricate, and characterize an optimum metal-insulator-metal diode that can be used as a fast switching diode in various applications such as solar energy conversion. The improvements of this type of diode will result in rectification of a wider spectrum of AC signals to usable electricity. In this project, several proposed designs of MIM diodes were successfully fabricated and characterized. Pt-Al2O3-Al metal-insulator-metal diode was fabricated to have high asymmetry in I-V curve. Additionally, in an attempt to study the effect of material properties on MIM diode???s performance, four different combinations of MIIIIM diode were compared and discussed. Many processes were involved in the fabrication of these diodes such as E-beam evaporation, photolithography, reactive ion etching RIE, and Atomic Layer Deposition (ALD) technique. The fabricated tunneling diodes are intended to operate in the GHz regime and can also operate at higher frequencies (THz) by changing and scaling the dimensions. In addition to MIM diode work, this project attempted to engineer the contrast curve of polystyrene as a negative resist used for E-beam lithography using multi layer resist stack. If the resist stack has a very high contrast and its sensitivity differs between the various layers, it can be ideal for the fabrication of multi-level zone-plate/Fresnel lens.
57

II-VI optoelectronic devices

Thompson, Paul January 1996 (has links)
No description available.
58

Characterization of solitons and shockwaves in nonlinear transmission lines at microwave frequencies

Salameh, Daoud Yousef January 1998 (has links)
No description available.
59

Silizium-Oberwellenmischer für den Mikrowellenbereich

Zhao, Weiwei. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
60

Silizium-Oberwellenmischer für den Mikrowellenbereich

Zhao, Weiwei. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Stuttgart.

Page generated in 0.0305 seconds