Spelling suggestions: "subject:"dipôle dde courant"" "subject:"dipôle dee courant""
1 |
Contribution à l'amélioration du modèle de source dans la méthode des éléments finis pour la résolution du problème direct en électroencéphalographie / Contribution to the improvement of the source model with the finite element method for solving the forward problem in electroencephalographyMedani, Takfarinas 24 May 2016 (has links)
La compréhension du fonctionnement du cerveau est un des défis majeurs des neurosciences. Pour appréhender cet organe in vivo de nombreux dispositifs sont développés, parmi eux l'électroencéphalographie (EEG). L'EEG mesure directement et d’une manière non invasive les signaux du cerveau avec une haute résolution temporelle. L’activation électrique d’une région dans le cerveau est modélisée par un dipôle de courant. Le principal objectif de l’EEG est le suivi de l'activité cérébrale pendant une tâche spécifique et la localisation/reconstruction des dipôles sources dans le cerveau. Il est utilisé à la fois dans la pratique et dans les recherches en neuroscience. Le processus de localisation des sources implique la résolution d'un problème inverse qui nécessite des modèles de la solution du problème direct. Le problème direct concerne la prédiction du potentiel électrique, résultant de l'activité cérébrale, sur le scalp à partir d'une répartition des sources données dans le cerveau. La précision de la localisation des sources dépend largement des performances de la solution du problème direct, qui est liée à la précision du modèle de tête, du modèle des sources ainsi que de la méthode de résolution du problème direct. Actuellement en pratique, pour des raisons de simplicité de calcul et de rapidité, les algorithmes EEG utilisent principalement le modèle de tête sphérique multicouche ou la méthode des éléments de frontière pour résoudre le problème direct. L’amélioration de la résolution en EEG nécessite l’utilisation de modèles de têtes plus réalistes qui prennent en considération d’avantages de paramètres tels que l’inhomogénéité et l’anisotropie des tissus. C’est pour ces raisons que la méthode des éléments finis (FEM) est la mieux adaptée et a attiré l’attention de plusieurs chercheurs. Néanmoins, avec la discrétisation de la FEM, les sources peuvent présenter une singularité numérique, ceci impacte négativement la solution du problème direct. Afin de remédier à ce problème des techniques tel que la méthode directe, la méthode de soustraction et la méthode de Saint Venant sont utilisées pour traiter la singularité. Cependant, toutes ces méthodes montrent des instabilités numériques dans le cas de sources situées à proximité des interfaces des tissus du cerveau. Pour y remédier une amélioration a été apportée à la méthode de Saint Venant au cours de cette thèse. Le rapport donne un aperçu sur l’activité cérébrale, un rappel de la FEM, son application pour la résolution du problème direct en EEG, le traitement de la singularité numérique et des instabilités près des interfaces, puis une présentation de la version modifiée de Saint-Venant, proposée et mise en œuvre dans ce travail. Nous validerons les résultats de la méthode modifiée de Saint-Venant dans des modèles de têtes sphériques multicouches et des modèles à géométries réelles. Pour finir, on testera cette méthode dans les outils et logiciels actuellement utilisés dans la pratique pour la localisation des zones activé dans le cerveau et nous montrerons les améliorations qui peuvent être apportées en utilisant notre approche de la méthode de Saint Venant modifiée. / Understanding the brain functions is one of the major challenges of neuroscience. To apprehend this organ in vivo many devices are developed, among them the electroencephalography (EEG). EEG measures directly and noninvasively the brain signals with high time resolution. The electrical activation of a region in the brain is modeled by a current dipole. The main objective of the EEG is monitoring the brain activity during a specific task and the location/reconstruction of the dipole sources within the brain. It is used both in practice and in research in neuroscience. The source’s localization process consists of solving an inverse problem that requires models of the solution of the direct or forward problem. The forward problem is the prediction of the electric potential on the scalp from a distribution sources in the brain. The accuracy of the source’s localization depends largely on the performance of the forward problem’s solution, which is related to the accuracy of the head model, the source model and the related method used to solve the forward problem. Currently in practice for reasons of computational simplicity and speed, EEG codes use mainly the multilayered spherical head model or the boundary element method for solving the forward problem. Improving the EEG’s source localization requires the use of more realistic head models which take into account more parameters such as inhomogeneity and anisotropy of the tissues. For these reasons the finite element method (FEM) is best suited and attracted the attention of many researchers. Nevertheless, with the FEM discretization, the sources may bring a numerical singularity; this negatively impacts the solution of the forward problem. To treat this problem some techniques such as the direct method, the subtraction method and the method of Saint-Venant are developed. However, all these methods show numerical instabilities in the case from sources close to the interfaces of brain tissue. To remedy these instabilities a modification was made on the Saint-Venant’s method. The report provides an overview on brain activity, a reminder of the FEM, its application for solving the forward problem in EEG, processing to treat the numerical singularity of the source and the instability near interfaces using the modified method of the Saint-Venant. We validate the results of the modified Venant’s method in models of multilayered spherical head and models with real geometries. Finally, we will test this approach in tools and software currently used in practice for locating areas activated in the brain and shows the improvements that can be made using the method of modified Saint-Venant.
|
2 |
Conventional and Reciprocal Approaches to the Forward and Inverse Problems of ElectroencephalographyFinke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du
problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque.
L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses.
Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne.
On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées.
Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent.
Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach.
The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions.
In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities.
We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed.
While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise.
Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed.
Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
|
3 |
Conventional and Reciprocal Approaches to the Forward and Inverse Problems of ElectroencephalographyFinke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du
problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque.
L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses.
Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne.
On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées.
Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent.
Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach.
The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions.
In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities.
We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed.
While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise.
Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed.
Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
|
Page generated in 0.0442 seconds