• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 35
  • 9
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 136
  • 136
  • 45
  • 44
  • 41
  • 39
  • 38
  • 29
  • 28
  • 27
  • 23
  • 22
  • 21
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Création de bases de données fines par simulation directe pour les effets de la turbulence sur les transferts thermiques pariétaux / Creation of a database by Direct numerical simulation dedicated to turbulence effects on near-wall conjugate heat transfer

Flageul, Cédric 29 October 2015 (has links)
Cette étude porte sur le transfert thermique pariétal dans un canal plan turbulent. L'étude est théorique et numérique. Nos simulations directes (DNS) sont effectuées avec le code de calcul Incompact3d. On a porté un intérêt particulier aux grandeurs que l'on trouve dans les bilans des flux thermiques turbulents et de la variance de la température : ces données permettent de valider les modèles de type RANS. On analyse également nos simulation à l'aune de statistiques plus fines, telles que les corrélations en 2 points. On distingue 2 traitements de la thermique dans le cas du canal plan turbulent : avec ou sans prise en compte du transfert thermique conjugué (couplage thermique fluide/solide). Pour les cas avec transfert thermique conjugué, on a mis en évidence une condition de compatibilité dans l'espace spectral entre la température et le flux de chaleur à l'interface fluide-solide. En l'absence de transfert thermique conjugué, notre étude se borne aux conditions limites qui sont une combinaison linéaire à coefficients constants de la température et du flux de chaleur à la paroi (Dirichlet, Neumann, Robin). Pour ces conditions aux limites simples, on met en évidence une condition de compatibilité entre les valeurs pariétales de la variance de la température et la partie normale de la dissipation associée. D'une part, cette relation souligne les limites des simulations avec une température ou un flux imposé à la paroi. D'autre part, elle permet de construire des conditions de type Robin sur-mesure qui donnent des résultats proches de ceux obtenus avec transfert thermique conjugué pour la configuration du canal plan turbulent. / This study focuses on the turbulent heat transfer in the turbulent channel flow configuration. Our Direct Numerical Simulations are performed using the open-source code Incompact3d. As our target is to produce data for RANS models validation, the budgets of the turbulent heat fluxes and of the temperature variance are extracted. Two-point correlations for the temperature and wall-normal heat flux are also presented to deepen our analysis. Regarding the thermal field, 2 configurations are considered: with and without conjugate heat transfer (thermal coupling between the fluid and solid domains). For conjugate heat transfer cases, a novel compatiblity condition, expressed in the spectral space, connects the temperature and wall-normal heat flux at the fluid-solid interface. For non-conjugate cases, our study is limited to boundary conditions that impose a linear combination of the temperature and wall-normal heat flux at the wall using constant coefficients (Dirichlet, Neumann, Robin). For such simple boundary conditions, a novel compatibility condition is obtained which connects the wall-value of the temperature variance and the wall-normal part of the associated dissipation rate. On one hand, this condition highlights the limitations of an imposed temperature or heat-flux at the wall. On the other, it allows us to build tailored Robin boundary conditions able to reproduce satisfactorily present conjugate heat-transfer results in the channel flow configuration.
52

Direct Numerical Simulations and Fluctuating Force Simulations of Turbulent Particle-gas Suspensions

Tyagi, A January 2017 (has links) (PDF)
Turbulent gas-particle suspensions are of great practical importance in many naturally phenomena, such as dust storms and snow avalanches, as well as in industrial applications such as fluidised, circulating bed reactors and pneumatic transport. Due to the difference in mass density of about three orders of magnitude between solids and gases, the mass loading is large, but the volume fraction of the particles is usually small. Since the length scale of these flows ranges from tens of centimeters to hundreds of meters, the Reynolds number based on the flow dimension and velocity is usually large. Due to this, these flows are almost always in the turbulent regime, and the fluid velocity fluctuations are significant. The particle sizes are typically small in these applications, of the order of 100 m or less. Due to this, the Reynolds number (based on the particle size and velocity) is usually low. This implies that the fluid inertia is not important, and the flow dynamics is dominated by fluid viscosity at the particle scale. At the same time, due to the density contrast between the particles and fluid, the Stokes number (ratio of particle inertia and fluid viscosity) is large. The inertia is sufficiently large that the particles cross the fluid streamlines. In this situation, there is a two-way coupling between the fluid turbulence and the particle dynamics. The turbulent fluid velocity fluctuations result in particle velocity fluctuations due to the drag force exerted by the particles on the fluid. In turbulent gas-particle suspensions, the fluctuating velocity of the particles results in a force on the fluid, which could either enhance or dampen the turbulent velocity fluctuations. The finite size of the particles could also result in fluid velocity effects which can not be captured by considering the particles as point masses. The dynamics of turbulent particle suspensions is analysed in the limit of low particle Reynolds number and high particle Stokes number, where there is a balance between particle inertia and fluid viscosity. The turbulent gas flow in a channel is considered for definiteness, in order to analyse the effect of turbulent fluctuations, as well as the effect of cross-stream variations in the turbulent statistics. The particle size is considered to be comparable to the Kolmogorov scales, which are the smallest scales in the turbulent flow. In addition, the fluid inertia at the particle scale is neglected, and the particles are dynamics is modeled using the Stokes equations. However, inertial effects are included at the macroscopic scale, where the Navier-Stokes equations are solved by Direct Numerical Simulations (DNS) using Chebyshev-Fourier spectral techniques. There are three important objectives in the present analysis. 1. The first is to examine the turbulence modification due to the reverse force of the particles. There are two models used for the reverse force of the particles on the fluid. The first is a point force, which is modeled as a delta function in real space. Instead of using smoothing functions for the delta function, we prefer to incorporate the point force in the momentum conservation equation in spectral space. A more complicated representation proposed here involves the inclusion of the symmetric and anti-symmetric force moments, calculated from the solution of Stokes equations for the flow around the sphere. These are represented as gradients of delta functions, and are also included in the momentum conservation equations in the spectral co-ordinates. 2. The second objective is to examine the effect of particle rotation and collisions on the flow dynamics. While particle rotation is usually included in the analysis of granular flows, this is not normally included in the treatment of particle collisions. 3. The third objective is to examine whether the effect of the fluid turbulence can be modeled as a fluctuating force. When the viscous relaxation time of the particles is larger than the integral time for the fluid velocity fluctuations, the fluid velocity fluctuations can be considered as delta function correlated in time, and the effect of these fluctuations can be incorporated using a Langevin description. In this case, the diffusion coeffcients in the Langevin equation for the particles is calculated from the correlation in the fluid velocity fluctuations. The new objective here is to include both the drag force and the torque exerted on the particles in the presence of particle rotation, and to examine whether these are sufficient to capture the effect of ff fluid turbulence on the particle phase. The Direct Numerical Simulations show that there is a significant attenuation of the turbulent velocity fluctuations when the reverse force exerted by the particles is added in the fluid momentum equations, and the particles are considered to be smooth. This turbulence attenuation is greater when the particle volume fraction increases, and when the particle mass density increases. However, when particle rotation is included, the turbulent velocity fluctuations are significantly larger than those without rotation, and in come cases are close the fluctuation levels when the reverse force is included. Thus, the particle rotation has a significant enhancement on the turbulent velocity fluctuations. The attenuation in the fluid turbulence is also reflected in the magnitude of the particle fluctuating velocities. The particle fluctuating velocities are higher when the effect of particle rotation is included. The reason for this is that there is particle rotation induced due to mean fluid shear, and this rotational energy gets transformed into translational energy in inter-particle collisions. The effect of inclusion of the symmetric and anti-symmetric force moments does not result in a significant change in the turbulence intensities for the range of volume fractions and mass densities considered here. There is a small but discernible increase in the turbulence for the largest volume fraction and mass density considered here, but this increase is much smaller than the significant turbulence attenuation due to the inclusion of particle rotation. Systematic trends are also observed in the particle linear and angular velocity distributions. The particle stream-wise linear velocity distribution, and the span-wise angular velocity distribution are broader than a Gaussian distribution near the zero, and exhibit steep decrease at larger velocity. They are also asymmetric, and the distribution depends on the location across the channel. The distribution of the cross-stream and span-wise linear velocity and the stream-wise and cross-stream angular velocity, is narrower than a Gaussian distribution at the center, and exhibits long tails for high velocities. Thus, there are systematic variations in the distribution functions for both the linear and angular velocities, which need to be included in kinetic theory descriptions for the particle phase. The fluctuating force model has also been simulated, where particle dynamics is explicitly simulated, the fluid velocity fields are not simulated, but are modeled as fluctuating forces and torques acting on the particles. The variance in the fluctuating force and torque are determined from the correlations in the fluid velocity and the vorticity fields, and these are modified to include the turbulence attenuation due to the reverse force exerted by the particles. The fluctuating force simulations do accurately capture the trends observed in the mean and fluctuating velocities. They are also able to capture the non-Gaussian nature of the linear and angular velocity distributions of the particles, even though the random forcing is considered to be a Gaussian function. Thus, the fluctuating force formulation can be used to accurately capture the effect of the fluid on the particles, only if the forces are modified to include the effect of turbulence attenuation due to the reverse force exerted by the particles.
53

Control of soot formation in laminar flames by magnetic fields and acoustic waves / Contrôle de formation de suie dans des flammes laminaires par champs magnétiques et vagues acoustiques

Jocher, Agnès 24 February 2017 (has links)
Cette thèse consiste en l'étude expérimentale et numérique des processus de formation des particules de suie au sein des flammes laminaires non-pré-mélangées et partiellement prémélangées sous l'influence d'un champ magnétique ou d'une stimulation acoustique. Dans une premiére étape, la capacité du code CIAO à prédire la fraction volumique de suie dans une flamme axisymétrique est étudiée. Par la suite, deux flammes subissant une stimulation acoustique ont été étudiées. Les résultats peuvent être utilisés pour améliorer les modèles de suie futurs, en particulier concernant les différentes échelles temporelles de la chimie en phase gazeuse, et la formation d'hydrocarbures polyaromatiques (PAH) et de suie couplée avec des flux transitoires. Pour étudier la formation des particules de suie sous l'influence de gradients de champ magnétique, un brûleur de type Santoro est utilisé. Les techniques de mesure utilisées dans le cadre de cette thèse sont l'imagerie directe à haute cadence, la technique Background Oriented Schlieren (BOS) et la méthode d'Absorption/Emission Modulée (MAE). Une augmentation de la fraction volumique de suie intégrée a été mise en évidence lorsque le gradient de champ magnétique est ascendant. Une analyse de stabilité linéaire locale appliquée à l'écoulement non-visqueux est présentée pour une flamme sous l'influence de la perturbation magnétique envisagée. Le gradient de champ magnétique provoque alors une réduction du taux d'amplification. De fait, l'étude est complété par l'identification d'un domaine où les flammes qui oscillent naturellement peuvent être stabilisées et contrôlées par des gradients de champ magnétique. / In this thesis light is shed on the soot formation processes in laminar coflow flames influenced by magnetic field gradients and acoustic forcing. Both influences have been assessed experimentally and numerically. First, the CIAO in-house code's ability to predict soot volume fraction fields in a steady coflow flame is studied. Then, two acoustically forced cases were studied. These findings are used to improve future soot models, especially, concerning the different time scales of gas phase chemistry and the formation of polycyclic aromatic hydrocarbons (PAH) and soot coupled with unsteady flows. To investigate soot formation under magnetic field gradients, a Santoro type burner is used. The measurement techniques applied in the course of this thesis are high-speed luminosity measurements, Background Oriented Schlieren (BOS) and one- and two-color Modulated Absorption/Emission (MAE) techniques. The magnetic field impact on soot formation was first studied experimentally in steady laminar flames. A scaling of soot production similar to the increased integrated soot volume fraction with increased oxygen content in the coflow was documented. A local inviscid stability analysis is presented for an ethylene coflow flame to investigate the flame's response to small perturbations of the mean velocity, temperature, fuel, and oxygen massfraction under magnetic field exposure. The magnetic field is found to reduce the perturbations' growth rate. The magnetic field study is completed by identifying a domain where naturally oscillating flames can be stabilized and controlled by magnetic field gradients.
54

DNS of inhomogeneous reactants premixed combustion

Lim, Kian Min January 2015 (has links)
The search for clean and efficient combustors is motivated by the increasingly stringent emissions regulations. New gas turbine engines are designed to operate under lean conditions with inhomogeneous reactants to ensure cleanliness and stability of the combustion. This ushers in a new mode of combustion, called the inhomogeneous reactants premixed combustion. The present study investigates the effects of inhomogeneous reactants on premixed combustion, specifically on the interactions of an initially planar flame with field of inhomogeneous reactants. Unsteady and unstrained laminar methane-air flames are studied in one- and two-dimensional simulations to investigate the effects of normally and tangentially (to the flame surface) stratified reactants. A three-dimensional DNS of turbulent inhomogeneous reactants premixed combustion is performed to extend the investigation into turbulent flames. The methaneair combustion is represented by a complex chemical reaction mechanism with 18 species and 68 steps. The flame surface density (FSD) and displacement speed S_d have been used as the framework to analyse the inhomogeneous reactants premixed flame. The flames are characterised by an isosurface of reaction progress variable. The unsteady flames are compared to the steady laminar unstrained reference case. An equivalence ratio dip is observed in all simulations and it can serve as a marker for the premixed flame. The dip is attributed to the preferential diffusion of carbon- and hydrogen- containing species. Hysteresis of S_d is observed in the unsteady and unstrained laminar flames that propagate into normally stratified reactants. Stoichiometric flames propagating into lean mixture have a larger S_d than lean flames propagating into stoichiometric mixtures. The cross-dissipation term contribution to S_d is small (~~10%) but its contribution to the hysteresis of S_d is not (~~50%). Differential propagation of the flame surface is observed in the laminar flame that propagates into tangentially stratified reactants. Stretch on the flame surface is induced by the differential propagation, which in turn increases the flame surface area.
55

Hydrodynamics of granular gases: clustering, universality and importance of subsonic convective waves

Hummel, Mathias 26 October 2016 (has links)
No description available.
56

Turbulence à hautes fréquences dans le vent solaire : Modèle magnétohydrodynamique Hall et expériences numériques / High frequency turbulence in the solar wind : Hall magnetohydrodynamic model and numerical experiments

Meyrand, Romain 20 March 2013 (has links)
La turbulence tridimensionnelle se caractérise par sa capacité à transférer de l'énergie des grandes vers les petites échelles où elle est finalement dissipée. Lorsqu’elle se produit dans un plasma non-collisionnel comme le vent solaire, une modélisation cinétique semble a priori nécessaire. Toutefois, la complexité d’une telle approche limite les développements théoriques et condamne les expériences numériques à se restreindre à des nombres de Reynolds peu élevés. Dans quelles mesures un modèle mono-fluide comme la MHD Hall permet-il de rendre compte des phénomènes observés dans le vent solaire aux échelles sub-ioniques ? C’est la problématique à laquelle s’est attaquée cette thèse. L’idée directrice de ce travail est de tirer profit de la relative simplicité des modèles fluides et de la puissance algorithmique des méthodes pseudo-spectrales pour aborder la turbulence du vent solaire par des simulations numériques directes tridimensionnelles massivement parallèles à grands nombres de Reynolds. Ces simulations numériques ont permis de mettre en évidence l’existence d’une brisure spontanée de symétrie chirale en turbulence MHD Hall incompressible, ainsi que l’existence d’un nouveau régime appelé ion MHD (IMHD). Un modèle phénoménologique a été proposé pour rendre compte de ces résultats et de nouvelles prédictions ont été faites, puis confirmées numériquement. Enfin, l’étude de l’effet d’un fort champ magnétique uniforme sur la dynamique turbulente a permis de confirmer pour la première fois une ancienne conjecture. L’inertie des électrons a ensuite été prise en compte toujours dans un modèle fluide. Par une approche hydrodynamique classique, une loi universelle a été obtenue pour les fonctions de structure d’ordre trois. L’ensemble de ces résultats est qualitativement en accord avec les mesures in situ du vent solaire et remet en cause le paradigme selon lequel les raidissements successifs du spectre des fluctuations magnétiques sont provoqués nécessairement par des phénomènes d’origine cinétique. De manière plus générale, cette thèse soulève des questions fondamentales sur les processus non-collisionnels de dissipation dans les plasmas turbulents. / Three-dimensional turbulence is characterized by its capacity to transfer energy from large to small scales where it is finally dissipated. When it occurs in a non-collisional plasma like the solar wind, a kinetic modelisation is necessary a priori. The complexity of such an approach however limits the theoretical developments and forces numerical experiments to be restricted to low Reynolds numbers. To what extent does a single-fluid model such as MHD Hall account for the phenomena observed in the solar wind at ion sub-scales ? It is to this question that this thesis tries to answer. The main idea of this work is to take advantage of the relative simplicity of fluid models and of the high precision of pseudo spectral methods to tackle the problem of turbulence in solar wind by direct numerical simulations massively parallelized at high Reynolds numbers. These simulations have helped to highlight the existence of a spontaneous breaking of chiral symmetry in incompressible Hall MHD turbulence, as well as the existence of a new regime called ion MHD (HDMI). A phenomenological model has been proposed to account for these results and new predictions were made and confirmed numerically. The study of the effect of a strong uniform magnetic field on the turbulent dynamics confirmed an ancient conjecture for the first time. The inertia of the electrons was then taken into account in a still fluid model. By a classical hydrodynamic approach, a universal law has been obtained for the third order structure functions. All these results are in qualitative agreement with in situ measurements of the solar wind and challenge the paradigm according to which the successive steepening of the magnetic fluctuations spectrum is necessarily caused by phenomenon of kinetic origin. More generally, this thesis raises fundamental questions about the non-collisional dissipation process in turbulent plasmas.
57

Analysis of primary atomization in sprays using Direct Numerical Simulation

Crialesi Esposito, Marco 21 December 2019 (has links)
[ES] La comprensión de los fenómenos físicos que acontecen en la región densa (también conocida como campo cercano) durante la atomización de los sprays ha sido una de las mayores incógnitas a la hora de estudiar sus aplicaciones. En el sector industrial, el rango de interés abarca desde toberas en aplicaciones propulsivas a sprays en aplicaciones médicas, agrícolas o culinarias. Esta evidente falta de conocimiento obliga a realizar simplificaciones en la modelización, provocando resultados poco precisos y la necesidad de grandes caracterizaciones experimentales en la fase de diseño. De esta manera, los procesos de rotura del spray y atomización primaria se consideran problemas físicos fundamentales, cuya complejidad viene dada como resultado de un flujo multifásico en un régimen altamente turbulento, originando escenarios caóticos. El análisis de este problema es extremadamente complejo debido a la ausencia sustancial de teorías validadas referentes a los fenómenos físicos involucrados como son la turbulencia y la atomización. Además, la combinación de la naturaleza multifásica del flujo y su comportamiento turbulento resultan en una gran dificultad para afrontar el problema. Durante los últimos 10 años, las técnicas experimentales han sido finalmente capaces de visualizar la región densa, pero la confianza, análisis y efectividad de dichos experimentos en esta región del spray todavía requiere de mejoras sustanciales. En este contexto, esta tesis trata de contribuir al entendimiento de estos procesos físicos y de proporcionar herramientas de análisis para estos flujos tan complejos. Para ello, mediante Direct Numerical Simulations se ha afrontado el problema resolviendo las escalas de movimiento más pequeñas, y capturando todas las escalas de turbulencia y eventos de rotura. Uno de los objetivos de la tesis ha sido evaluar la influencia de las condiciones de contorno del flujo entrante en la atomización primaria y en el comportamiento turbulento del spray. Para ello, se han empleado dos condiciones de contorno diferentes. En primer lugar se ha empleado una condición de contorno sintética para producir turbulencia homogenea a la entrada, simulando el comporamiento de la tobera. Una de las características más interesantes de este método es la posibilidad de retocar los parámetros dentro del algoritmo. En particular, la escala de longitud integral se ha variado para evaluar la influencia de las estructuras mas grandes de la tobera en la atomización primaria. El análisis de la condición de contorno sintética también ha permitido el diseño óptimo de simulaciones de las cuales se han derivado estadísticas turbulentas significativas. En este escenario, se han llevado a cabo estudios más profundos sobre la influencia de propiedades de las estructuras turbulentas como la homogeneidad y la anisotropía tanto en el espectro de los flujos como en las estadísticas de las gotas. Para tal fin, se han desarrollado metodologías novedosas para computar el análisis espectral y la estadística de las gotas Entre los resultados de este análisis destaca la independencia de la condición de contorno de entrada en las estadísticas de las gotas, mientras que por otra parte, recalca que las características turbulentas desarrolladas en el interior de la tobera afectan a la cantidad total de masa atomizada. Estas consideraciones se encuentran respaldadas por el análisis espectral realizado, mediante el cuál se concluye que la turbulencia multifásica comparte el comportamiento universal descrito por las teorías de Kolmogorov. / [CAT] La comprensió dels fenòmens físics que succeïxen en la regió densa (també coneguda com a camp pròxim) durant l'atomització dels sprays ha sigut una de les majors incògnites a l'hora d'estudiar les seues aplicacions. En el sector industrial, el rang d'interés comprén des de toveres en aplicacions propulsives a sprays en aplicacions mèdiques, agrícoles o culinàries. Esta evident falta de coneixement obliga a realitzar simplificacions en la modelització, provocant resultats poc precisos i la necessitat de grans caracteritzacions experimentals en la fase de disseny. D'esta manera, els processos de ruptura del spray i atomització primària es consideren problemes físics fonamentals, la complexitat dels quals ve donada com resultat d'un flux multifàsic en un règim altament turbulent, originant escenaris caòtics. L'anàlisi d'este problema és extremadament complex a causa de l'absència substancial de teories validades dels fenòmens físics involucrats com són la turbulència i l'atomització. A més, la combinació de la naturalesa multifàsica del flux i el seu comportament turbulent resulten en una gran dificultat per a afrontar el problema. Durant els últims 10 anys les tècniques experimentals han sigut finalment capaces de visualitzar la regió densa, però la confiança, anàlisi i efectivitat dels experiments en esta regió del spray encara requerix de millores substancials. En este context, esta tesi tracta de contribuir en l'enteniment d'estos processos físics i de proporcionar ferramentes d'anàlisi per a estos fluxos tan complexos. Per a això, per mitjà de Direct Numerical Simulations s'ha afrontat el problema resolent les escales de moviment més menudes, al mateix temps que es capturen totes les escales de turbulència i esdeveniments de ruptura. Un dels objectius de la tesi ha sigut avaluar la influència que les condicions de contorn del flux entrant tenen en l'atomització primària i en el comportament turbulent del spray. Per a això, s'han empleat dos condicions de contorn diferents. En primer lloc s'ha empleat una condició de contorn sintètica per a produir turbulència homogènia a l'entrada, simulant el comportament de la tovera. Una de les característiques més interessants d'este mètod és la possibilitat de retocar els paràmetres dins de l'algoritme. En particular, l'escala de longitud integral s'ha variat per a avaluar la influència de les estructures mes grans de la tovera en l'atomització primària. L'anàlisi de la condició de contorn sintètica també ha permés el disseny òptim de simulacions de les quals s'han derivat estadístiques turbulentes significatives. En este escenari, s'han dut a terme estudis més profunds sobre la influència de propietats de les estructures turbulentes com l'homogeneïtat i l'anisotropia tant en l'espectre dels fluxos com en les estadístiques de les gotes. Per a tal fi, s'han desenrotllat metodologies noves per a computar l'anàlisi espectral i l'estadística de les gotes. Entre els resultats d'esta anàlisi destaca la independència de la condició de contorn d'entrada en les estadístiques de les gotes, mentres que d'altra banda, es recalca que les característiques turbulentes desenrotllades en l'interior de la tovera afecten a la quantitat total de massa atomitzada. Estes consideracions es troben recolzades per l'anàlisi espectral realitzat, per mitjà del qual es conclou que la turbulència multifásica compartix el comportament universal descrit per les teories de Kolmogorov. / [EN] The understanding of the physical phenomena occurring in the dense region (also known as near field) of atomizing sprays has been long seen as one of the biggest unknown when studying sprays applications. The industrial range of interest goes from nozzles in combustion and propulsion applications to medical sprays, agricultural and food process applications. This substantial lack of knowledge is responsible for some important simplification in modeling, that often result to be inaccurate or simply partial, leading to the evident need of large experimental characterization during the design phase. In fact, the spray breakup and primary atomization processes are indeed fundamental problems of physics, which complexity results from the combination of a multiphase flow in a highly turbulent regime that leads to chaotic scenarios. The analysis of this problem is extremely problematic, due to a substantial lack of definitive theories about the physical phenomena involved, namely turbulence and atomization. Furthermore, the combination of the multiphase nature of the flow and its turbulent behavior makes substantially difficult to address the problem. Only within the last 10 years, experimental techniques have been capable of visualizing the dense region, but the experiments reliability, analysis and effectiveness in this region still requires vast improvements. In this scenario, this thesis aims to contribute in the understanding of these physical process and to provide analysis tools for these complex flows. In order to do so, Direct Numerical Simulations have been used for addressing the problem at its smallest scale of motion, while reliably capturing all turbulence scales and breakup events. The multiphase nature of the flow is accounted for by using the Volume of Fluid method. One of the goal of the thesis was to assess the influence of the inflow boundary conditions on the primary atomization and on the spray's turbulence behavior. In order to do so, two different boundary conditions were used. In a first place, a synthetic inflow boundary condition was used in order to produce a homogeneous turbulence inflow, simulating the nozzle behavior. One of the interesting features of this method was the possibility of tweaking the parameters within the algorithm. In particular, the integral length scale was varied in order to assess the influence of nozzle larger turbulent structures on the primary atomization. The analysis on the synthetic boundary condition also allowed to optimally design simulations from which derive meaningful turbulence statistics. On this framework, further studies were carried over on the influence of turbulent structures properties, namely homogeneity and anisotropy, on both the flows spectra and droplets statistics. In order to achieve this goal, novel procedures for both computing the flow spectra and analyzing droplets were developed and are carefully addressed in the thesis. The results of the analysis highlight the independence of droplets statistics from the inflow boundary condition, while, on the other hand, remarking how the total quantity of atomized mass is significantly affected by the turbulence features developed within the nozzle. This considerations are supported by the spectrum analysis performed, which also highlighted how multiphase turbulence shares the universal features described in Kolmogorov theories. / Crialesi Esposito, M. (2019). Analysis of primary atomization in sprays using Direct Numerical Simulation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133975 / TESIS
58

Low-Reynolds Number Direct Numerical Analysis of an Iced NLF-0414 Airfoil

Lepage, François 15 November 2021 (has links)
A Direct Numerical Simulation of an iced Natural Laminar Flow NLF-0414 airfoil is carried out using a high-order spectral element method for low chord Reynolds numbers (O(10^5)). This study aims to advance the state-of-the-art for accurate computational modeling of transition, iced airfoil aerodynamics, and irregular surface spectral element method Direct Numerical Simulation. Ice accretion over an aircraft, ranging from light to severe, changes the aerodynamic profile of the airfoil and alters the overall performance. The literature presents simulations that have been carried out with a range of turbulence models which fail to accurately capture the complex physics of these flows. The iced profiles being studied, Run 606 and 622-2D, were obtained from a Technical Publication by NASA on iced airfoils including the NLF-0414, and were selected as they are relatively lightly iced profiles of the NLF-0414. The largest bottleneck with the current advancement in High Performance Computing is the computation time required for Direct Numerical Simulation. Results such as lift, drag, pressure, and skin friction coefficients, for a clean NLF-0414 and two lightly iced NLF-0414 airfoils at chord Reynolds numbers of Rec = 1 x 10^5 and Rec = 2 x 10^5 are visualized and discussed, showing the degradation of the natural laminar flow due to ice accretion. Turbulence statistics are calculated to study the effective contributions of turbulent fluctuations in the flow to further understand the flow physics near transition. The detailed study of these six cases has led us to 1) further understand the complexities of the transition process on iced airfoils, 2) observe and explain the sometimes unexpected changes in aerodynamic performance due to varying iced geometries, and 3) establish a methodology for spectral element method Direct Numerical Simulations.
59

Étude numérique des effets du couplage du rayonnement thermique aux jets turbulents libres de vapeur d'eau / Numerical investigation of the effects of coupled radiative heat transfer on free turbulent jets of water vapor

Mateu armengol, Jan 13 June 2019 (has links)
Le rayonnement thermique joue un rôle important dans un large éventail d'applications de génie thermique comprenant des écoulements turbulents. La motivation principale de cette thèse est le besoin croissant de précision et fiabilité dans les simulations numériques appliqué à ce domaine.Cette thèse s’intéresse tout particulièrement à la compréhension physique de l’impact du rayonnement thermique sur la dynamique des fluides et le transfert thermique, ainsi que de l’influence des fluctuations turbulentes sur le transfert radiatif dans les écoulements à couche de cisaillement.L'objectif de cette thèse est de fournir des données haute-fidélités de jets libres turbulents couplés au rayonnement thermique afin de développer et de valider des modèles turbulents d’écoulements à couche de cisaillement prenant en compte les interactions de couplage. À cette fin, les jets libres turbulents sont décrits par des simulations numériques directes (DNS) couplées à une méthode de Monte-Carlo réciproque pour résoudre l'équation de transfert radiatif. La dépendance spectrale des propriétés radiatives est prise en compte avec la méthode Correlated-k (ck). L'étude numérique est réalisée avec la plus grande fidélité pour être aussi représentative que possible d'un jet réel dans un milieu participatif. La simulation est optimisée en termes de temps de calcul en tirant parti d'une méthode d'accélération appelée Acoustic Speed Reduction et en injectant de la turbulence artificielle pour améliorer les conditions d'entrée.Deux simulations directes de jets chauffés couplés au rayonnement thermique sont réalisées. D'une part, un jet chauffé avec un rayonnement modéré a été simulé et l’analyse de ses données DNS couplées a permis de dériver une nouvelle loi d’échelle pour la décroissance du profil de température. Cette mise à l'échelle rend compte des effets de la densité modifiée due à un rayonnement modéré. De plus, cela permet de distinguer si le rayonnement thermique modifie ou non la nature des mécanismes de transfert thermique dans la région développée du jet. D'autre part, un jet libre fortement chauffé a été calculé afin de quantifier les effets du rayonnement sur les champs de température et de vitesse moyens ainsi que sur les moments de second ordre.Outre les données DNS couplées, un solver RANS pour les écoulements à densité variable couplé au rayonnement thermique a été développé au cours de cette thèse. L'objectif était de quantifier directement la précision des modèles turbulents existants et d'identifier les paramètres clés pour une modélisation plus poussée des interactions de couplage. / Radiation plays an important role in a broad range of thermal engineering applications comprising turbulent flows. The growing need for accurate and reliable numerical simulations to support the design stages of such applications is the main motivation of this thesis.Of special interest in this work are the free-shear flows and the fundamental understanding of how radiation can modify their fluid dynamics and heat trans- port as well as how their turbulence fluctuations can alter radiative transfer. The goal of this thesis is to provide high-fidelity data of turbulent free jets coupled with thermal radiation in order to develop and validate free-shear turbulent models accounting for coupling interactions. To this end, turbulent free jets are described by direct numerical simulations (DNS) coupled to a reciprocal Monte- Carlo method to solve the radiative transfer equation. The spectral dependency of the radiative properties is accounted for with an accurate Correlated-k (ck) method. The numerical study is carried out with state-of-the-art fidelity to be as representative as possible of an actual jet in a participating medium. The simulation is optimized in terms of processing time taking advantage of an acceleration method called Acoustic Speed Reduction and by injecting artificial turbulence to enhance inlet boundaries.Two direct simulations of heated jets coupled with thermal radiation are carried out. On the one hand, a heated jet with moderate radiation is simulated. The analysis of its high-fidelity coupled DNS data has allow to derive a new scaling law for the decay of the temperature profile. This scaling accounts for the effects of modified density due to moderate radiation. Moreover, it allows for distinguishing whether thermal radiation modifies the nature of heat transfer mechanisms in the jet developed region or not. On the other hand, a strongly heated free jet is computed in order to quantify the effects of radiation on mean temperature and velocity fields as well as on second order moments.Besides the coupled DNS data, a RANS solver for variable-density flows coupled with thermal radiation has been implemented during the course of this thesis. The goal is to directly quantify the accuracy of the existing turbulent models, and to identify key parameters for further modeling of coupling interactions.
60

Universality of Kolmogorov's Cascade Picture in Inverse Energy Cascade Range of Two-dimensional turbulence / 2次元乱流のエネルギー逆カスケード領域における、コルモゴロフのカスケード描像の普遍性について

Mizuta, Atsushi 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18446号 / 理博第4006号 / 新制||理||1578(附属図書館) / 31324 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 藤 定義, 教授 佐々 真一, 教授 早川 尚男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.0987 seconds