• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dinâmica da água e do nitrogênio em áreas variáveis de afluência: um estudo de caso em uma microbacia coberta predominantemente por cana-de-açúcar / Water and nitrogen dynamics within variable source areas: a case study in a small catchment covered predominantly by sugarcane

Salemi, Luiz Felippe 20 March 2014 (has links)
O nitrogênio (N) é um nutriente limitante à produtividade na maioria dos agroecossistemas. Contudo, seu uso indiscriminado provoca alterações subtanciais no funcionamento e estrutura dos ecossistemas terrestres e aquáticos, sendo a eutrofização apenas uma dessas consequências. O N dos ecossistemas terrestres atinge os rios, por meio do escoamento superficial (ES), entre outras vias hidrológicas. O ES pode ocorrer por duas possíveis razões: (i) intensidade de chuva excede a capacidade de infiltração e (ii) a capacidade de armazenamento de água no perfil do solo é excedida gerando ES devido à saturação do solo. As zonas de saturação do solo se expandem e se contraem ao longo de um evento de chuva e/ou estação chuvosa seguindo o modelo de áreas variáveis de afluência. É esperado que essas zonas atuaem como áreas de processamento biogeoquímico do N devido à ocorrência à transformação de nitratos em gases nitrogenados como o óxido nitroso (N2O). Este trabalho busca entender a dinâmica da água do solo com foco na variação espacial das áreas de saturação do solo e a dinâmica do N com foco nos fluxos de N2O, sua variabilidade espacial e controles. Para tanto, instrumentou-se, por meio de tensiômetros, lisímetros de tensão, câmaras estáticas, sensores de ES e poços de água subterrânea, três zonas de convergência de fluxos (ZC1, ZC2e ZC3) cobertas por cana-de-açúcar e floresta ripária. Subdividiu-se cada uma delas em três porções (cota inferior; cota intermediária e cota superior onde na ZC1 e ZC2, a cota inferior estava sob floresta ripária e a cota intermediária e superior sob cana-deaçúcar; e na ZC3: cota inferior e intermediária sob floresta ripária e cota superior sob cana-deaçúcar). Tal divisão seguiu um gradiente de área de contribuição e cada uma delas recebeu todo o aparato instrumental referido. O monitoramento hidrológico ocorreu em base semanal de Abril-2011 a Março-2012. As amostragens biogeoquímicas ocorreram onze vezes durante o período referido. As zonas de saturação se formam por dois processos: bottom-up e topdown. Além disso, a existência de uma faixa de floresta ripária mais larga na ZC3 conteve a formação de erosão avançada. Quanto ao N, só houve diferença significativa de fluxos de N2O na ZC3 durante a estação seca onde a cota inferior apresentou maiores fluxos em relação à cota intermediária e superior. O solo argiloso da cota inferior da ZC3 parece ter sido fator essencial para a detecção de diferenças significativas principalmente devido à maior retenção de água e carbono, fatores essenciais para a produção de N2O. Na ZC1 e ZC2 em que diferenças não foram encontradas a provável ausência de fatores que controlam a produção de N2O pode ter sido a razão desse resultado. As ZCs podem ter dinâmica de saturação hídrica similar ao já reportado em regiões temperadas e o tipo de solo (granulometria) tem influência decisiva na emissão de N2O, especialmente durante a estação seca onde o contraste de umidade entre as diferentes tipologias de solo se torna aparente / Nitrogen (N) is a nutrient that might limit agricultural yields in most of agroecosytems. On the other hand, its unwise use might promote substantial alterations to the functioning and structure of terrestrial and aquatic ecosystems. Eutrophication is only one visible aspect of its pernicious effects on the environment. N from terrestrial ecosystems can reach water bodies through many hydrological flowpaths including overland flow (OV). This hydrological process occurs for two reasons: (1) rainfall intensity exceeds the infiltration capacity and (ii) the soil moisture storage capacity is exceeded by the amout of rain entering the soil, producing OV due to soil saturation. The soil saturation zones expand and shrink during a rainfall event and/or the rainy season following the variable source area model. It is expected that saturated areas act as biogeochemical hotspots of N reducing processes due to their generally high water content. That is, nitrates are reduced to N gases like nitrous oxide (N2O). In the present study, we describe the soil water dynamics of soil saturation zones focusing on its spatial variability. Moreover, the N dynamics is also focused bringing more light into the N2O fluxes, their spatial variability and controls. To do so, three flow convergence zones (FCZ1, FCZ2 and FCZ3) covered by sugarcane and riparian forest were instrumented by using tensiometers, tension lysimeters, static chambers, water table wells and overland flow sensors. Each of the FCZs were divided into three parts (downslope, middleslope and upslope being FCZ1 and FCZ2: downslope under riparian forest, middleslope and upslope under sugarcane and FCZ3: downslope and middleslope both under riparian forest and upslope under sugarcane) following a gradient of increasing contribuition area. All of these FCZs parts were instrumented with the outlined equipment. The hydrological monitoring period occurred on a weekly basis from April-2011 to March-2012. The biogeochemical samplings took place eleven times throughout the course of the same period. The soil saturation zones might be formed by two main processes: bottom-up and top-down. The existence of a wider riparian forests buffer within FCZ3 avoided the development of erosion features that have been observed under FCZ1 and FCZ2. As for N, significant differences were found only for FCZ3 during the dry season, where the downslope part presented higher N2O fluxes compared to the other two parts of the hillslope. The clayey soil under FCZ3 downslope may have been the main factor promoting such differences mainly because of its higher water and carbon retention that, in conjunction, favour N2O production. At FCZ1 and FCZ2 the likely lack of factors that promote production and emission of N2O might be the reason for the lack of differences. Our results showed that the dynamics of soil saturation within tropical regions is similar to the ones presented for temperate regions. The soil type (texture) might have decisive importance in controlling N2O emissions. This is the case especially for the dry season when the contrast of soil moisture contents between different soil types became more apparent
2

Dinâmica da água e do nitrogênio em áreas variáveis de afluência: um estudo de caso em uma microbacia coberta predominantemente por cana-de-açúcar / Water and nitrogen dynamics within variable source areas: a case study in a small catchment covered predominantly by sugarcane

Luiz Felippe Salemi 20 March 2014 (has links)
O nitrogênio (N) é um nutriente limitante à produtividade na maioria dos agroecossistemas. Contudo, seu uso indiscriminado provoca alterações subtanciais no funcionamento e estrutura dos ecossistemas terrestres e aquáticos, sendo a eutrofização apenas uma dessas consequências. O N dos ecossistemas terrestres atinge os rios, por meio do escoamento superficial (ES), entre outras vias hidrológicas. O ES pode ocorrer por duas possíveis razões: (i) intensidade de chuva excede a capacidade de infiltração e (ii) a capacidade de armazenamento de água no perfil do solo é excedida gerando ES devido à saturação do solo. As zonas de saturação do solo se expandem e se contraem ao longo de um evento de chuva e/ou estação chuvosa seguindo o modelo de áreas variáveis de afluência. É esperado que essas zonas atuaem como áreas de processamento biogeoquímico do N devido à ocorrência à transformação de nitratos em gases nitrogenados como o óxido nitroso (N2O). Este trabalho busca entender a dinâmica da água do solo com foco na variação espacial das áreas de saturação do solo e a dinâmica do N com foco nos fluxos de N2O, sua variabilidade espacial e controles. Para tanto, instrumentou-se, por meio de tensiômetros, lisímetros de tensão, câmaras estáticas, sensores de ES e poços de água subterrânea, três zonas de convergência de fluxos (ZC1, ZC2e ZC3) cobertas por cana-de-açúcar e floresta ripária. Subdividiu-se cada uma delas em três porções (cota inferior; cota intermediária e cota superior onde na ZC1 e ZC2, a cota inferior estava sob floresta ripária e a cota intermediária e superior sob cana-deaçúcar; e na ZC3: cota inferior e intermediária sob floresta ripária e cota superior sob cana-deaçúcar). Tal divisão seguiu um gradiente de área de contribuição e cada uma delas recebeu todo o aparato instrumental referido. O monitoramento hidrológico ocorreu em base semanal de Abril-2011 a Março-2012. As amostragens biogeoquímicas ocorreram onze vezes durante o período referido. As zonas de saturação se formam por dois processos: bottom-up e topdown. Além disso, a existência de uma faixa de floresta ripária mais larga na ZC3 conteve a formação de erosão avançada. Quanto ao N, só houve diferença significativa de fluxos de N2O na ZC3 durante a estação seca onde a cota inferior apresentou maiores fluxos em relação à cota intermediária e superior. O solo argiloso da cota inferior da ZC3 parece ter sido fator essencial para a detecção de diferenças significativas principalmente devido à maior retenção de água e carbono, fatores essenciais para a produção de N2O. Na ZC1 e ZC2 em que diferenças não foram encontradas a provável ausência de fatores que controlam a produção de N2O pode ter sido a razão desse resultado. As ZCs podem ter dinâmica de saturação hídrica similar ao já reportado em regiões temperadas e o tipo de solo (granulometria) tem influência decisiva na emissão de N2O, especialmente durante a estação seca onde o contraste de umidade entre as diferentes tipologias de solo se torna aparente / Nitrogen (N) is a nutrient that might limit agricultural yields in most of agroecosytems. On the other hand, its unwise use might promote substantial alterations to the functioning and structure of terrestrial and aquatic ecosystems. Eutrophication is only one visible aspect of its pernicious effects on the environment. N from terrestrial ecosystems can reach water bodies through many hydrological flowpaths including overland flow (OV). This hydrological process occurs for two reasons: (1) rainfall intensity exceeds the infiltration capacity and (ii) the soil moisture storage capacity is exceeded by the amout of rain entering the soil, producing OV due to soil saturation. The soil saturation zones expand and shrink during a rainfall event and/or the rainy season following the variable source area model. It is expected that saturated areas act as biogeochemical hotspots of N reducing processes due to their generally high water content. That is, nitrates are reduced to N gases like nitrous oxide (N2O). In the present study, we describe the soil water dynamics of soil saturation zones focusing on its spatial variability. Moreover, the N dynamics is also focused bringing more light into the N2O fluxes, their spatial variability and controls. To do so, three flow convergence zones (FCZ1, FCZ2 and FCZ3) covered by sugarcane and riparian forest were instrumented by using tensiometers, tension lysimeters, static chambers, water table wells and overland flow sensors. Each of the FCZs were divided into three parts (downslope, middleslope and upslope being FCZ1 and FCZ2: downslope under riparian forest, middleslope and upslope under sugarcane and FCZ3: downslope and middleslope both under riparian forest and upslope under sugarcane) following a gradient of increasing contribuition area. All of these FCZs parts were instrumented with the outlined equipment. The hydrological monitoring period occurred on a weekly basis from April-2011 to March-2012. The biogeochemical samplings took place eleven times throughout the course of the same period. The soil saturation zones might be formed by two main processes: bottom-up and top-down. The existence of a wider riparian forests buffer within FCZ3 avoided the development of erosion features that have been observed under FCZ1 and FCZ2. As for N, significant differences were found only for FCZ3 during the dry season, where the downslope part presented higher N2O fluxes compared to the other two parts of the hillslope. The clayey soil under FCZ3 downslope may have been the main factor promoting such differences mainly because of its higher water and carbon retention that, in conjunction, favour N2O production. At FCZ1 and FCZ2 the likely lack of factors that promote production and emission of N2O might be the reason for the lack of differences. Our results showed that the dynamics of soil saturation within tropical regions is similar to the ones presented for temperate regions. The soil type (texture) might have decisive importance in controlling N2O emissions. This is the case especially for the dry season when the contrast of soil moisture contents between different soil types became more apparent
3

Hydrologické simulace odtoků vody z povodí při srážko-odtokových událostech / Event-based rainfall-runoff modelling of the selected river basin

TICHÁČEK, Pavel January 2018 (has links)
This thesis deals with the event-based rainfall-runoff modelling of the selected river basin. This thesis is based on my previous work "Factors affecting the water discharge from the river basin during rainfall-runoff events". In that work I described factors, which have effect on water runoff from the river basin. This thesis was solved on basin of Jílecký stream. Water runoff from basin is affected with a number of factors, the most significant are slope of the terrain, soil saturation, geological and pedological conditions, vegetation cover and anthropogenic influence. Calculations of direct runoff were realised with method of CN curves, with using BPEJ map, land use map gained from Corine Land Cover 2006 and maximum daily precipitation sums with 2, 10, 20, 50 and 100 years probabilities recurrence obtained from the rainfall station Netřebice. Calculations were performed in a numerical method using vector data and a raster method performed in ArcMap. In the next step I performed simulations of various scenarios of change in river basic characteristics such as soil saturation change, grassing of arable land with a slope greater than 12°, grassing of all arable land and enlargement the built-up area in the river basin.
4

Návrh parametrů malé vodní nádrže v prostředí GIS / The proposal parameters of the small water reservoir in GIS environment.

Feltl, Jakub January 2012 (has links)
This report deals with rainfall-runoff modeling and small water reservoir projection with usage of modern software equipments (GIS, HEC-HMS), using maximum number of available data sources (BPEJ, LPIS, N-year rainfall gages, 3D contours …). The advantage of this method is that it is possible to predict the shape of hydrograph and flood wave volume as well. Other methods cannot offer judgment of flood wave volume and hydrograph shape as this method does. The most important thing in small water reservoir projection is the flood wave volume value, which is undervalued nowadays using wrong evaluation. This method’s advantage is variability of scenarios depending on soil surface, used agricultures, hydraulic and hydrologic parameters etc.
5

Porovnání vybraných metod výpočtu základního odtoku na malém povodí a zhodnocení vlivu základního odtoku na koncentrace fosforu v celkovém odtoku. / Comparison of selected methods of calculating baseflow in a small basin and evaluate influnence of baseflow to concentrations of phosphorus in total runoff.

ŠVARCOVÁ, Eliška January 2013 (has links)
This thesis is focused on the methods of separation of baseflow and comparing of these metods. It is analyzing concentrations of total phosphorus in the total runoff and influence of baseflow to concentrations of phosphorus in total runoff. The studied area is subcatchment P52 in the catchment Kopaninský flow. Subcatchments P52 is small (64,93 hectares), drained agro-forestry catchment in Českomoravská vrchovina (Czech-Moravian highlands), with a large proportion of forest area (64% forest and 31% of arable land). Studied the period is hydrological period 2009 - 2011. To obtain the necessary results are used daily flow, daily concentrations, daily precipitation of rain gauge station Velký Rybník and monthly precipitation from rain gauge stations of the ČHMŮ (Czech Hydrometeorological Institute) in Humpolec. For the separation of the baseflow and comparison of methods were selected five methods: - method of digital filter according to Chapman (1999), - method UKIH designed by Institute of hydrology (1980), - method RDF proposed by LINE AND Hollick (1979), - method FUKIH proposed by AKOSY AT. AL. (2009) and - method of Kille (1970). All methods are simple to perform and not challenging to input data. When comparing methods, the main problem is that, the results obtained by different methods are very different. Another point of this work is to evaluate the concentrations of total phosphorus in the tatal runoff. Here is analyzed series of daily concentrations of total phosphorus and monthly and annual average concentrations. Low and high concentrations are compared with the values ??of precipitation and clinks are searched between these values. The main problem is that, the concentration of phosphorus are not dependent only on precipitation. The last point is solution of influnence of baseflow to the amount of total phosphorus in the runoff. Here is used the procedure which described BYSTŘICKÝ in its work (2012). There are determined values concentrations typical of baseflow, for direct runoff and total runoff. Groups of values ??are mutually tested and compared. The results show that, the baseflow is negligible contributor of phosphorus to the total runoff, but to achieve more accurate results would be needed to analyse a longer time period (eg 10 years) and compare the results with several different river basins.

Page generated in 0.046 seconds