• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 24
  • 16
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cognition in t(1;11) translocation carriers and patients with psychotic disorders

Duff, Barbara Jane January 2017 (has links)
Deficits in a number of cognitive domains have been associated with core symptoms of schizophrenia, including working memory, attention, motor skills, reaction time, episodic memory and executive function. Bipolar Disorder is also associated with cognitive impairment; however the level of impairment appears to be less severe than that seen in schizophrenia. A translocation (t(1;11)) containing the Disrupted-in-Schizophrenia 1 (DISC1) gene has been found to be highly associated with schizophrenia, bipolar disorder and major depressive disorder. As such, this gene has been the focus of much research and to date DISC1 has been found to be associated with brain development, brain structure and the glutamate system - all key factors in current models of schizophrenia and affective disorders. The aim of this PhD is to identify cognitive domains that are differentially impaired or unimpaired in a large Scottish family, some of whom carry this rare DISC1 variant, a balanced translocation (t (1;11) (q 42; q14.3)), that segregates with schizophrenia and affective disorders, as well as psychiatric patients with schizophrenia and bipolar disorder and healthy control subjects. All participants have undergone standardised cognitive assessments to measure premorbid I.Q. (NART), current I.Q. (WASI) verbal memory, working memory, verbal fluency, processing speed, motor skills, executive function (BACS) and selected CANTAB tasks to assess simple and five-choice reaction time. Polygenic risk profile scores and self-report questionnaire data have also been investigated. Results indicate an impact of the DISC1 t(1;11) translocation on general intelligence and attention and processing speed. Significant differences were also identified between DISC1 t(1;11) carriers and non-carriers on self-report questionnaire data. Mean scores for polygenic risk for bipolar disorder were significantly different between DISC1 t(1;11) carriers and non-carriers and polygenic risk for schizophrenia was significantly associated with symptom severity, as measured by the Positive and Negative Symptom Scale (PANSS). Within the patient groups, a measure of processing speed (the token motor task) was found to be significantly different between those with schizophrenia and bipolar disorder and there was also a trend for attention and processing speed. As expected, I.Q. was significantly different between patients and control participants. Clinical ratings were significantly associated with neuropsychological and self-report measures. Polygenic risk for major depressive disorder was found to be significantly associated with impaired general intelligence (current IQ) and slowed reaction time in patients who were not currently depressed, suggesting there may be genetic risk markers in this population which impact on cognition. This is a novel finding and further suggests the possibility of a biological component related to the genetics of depression. In conclusion, and in line with the literature, psychosis has a negative impact on cognition with reduced performance across several neuropsychological tasks between patient groups, with schizophrenia patients performing worse than patients with bipolar disorder and both patient groups performing worse than healthy control participants. Cognition is markedly more impaired in DISC1 t(1;11) translocation carriers and especially in those with psychosis. The DISC1 t(1;11) translocation and psychosis may therefore confer a “double hit” on cognition - in addition to psychosis itself - which is known to impair cognitive function, significantly increasing the level of cognitive impairment and increasing the risk for psychosis in general.
22

Investigating genome-wide transcriptional and methylomic consequences of a balanced t(1;11) translocation linked to major mental illness

McCartney, Daniel Lawrence January 2017 (has links)
Schizophrenia, bipolar disorder and major depressive disorder are devastating psychiatric conditions with a complex, overlapping genetic and environmental architecture. Previously, a family has been reported where a balanced chromosomal translocation between chromosomes 1 and 11 [t(1;11)] shows significant linkage to these disorders. This translocation transects three genes: Disrupted in schizophrenia- 1 (DISC1) on chromosome 1, a non-coding RNA, Disrupted in schizophrenia-2 (DISC2) antisense to DISC1, and a non-coding transcript, DISC1 fusion partner-1 (DISC1FP1) on chromosome 11, all of which could result in pathogenic properties in the context of the translocation. This thesis focuses on the genome-wide effects of the t(1;11) translocation, primarily examining differences in gene expression and DNA methylation, using various biological samples from the t(1;11) family. To assess the genome-wide effects of the t(1;11) translocation on methylation, DNA methylation was profiled in whole-blood from 41 family members using the Infinium HumanMethylation450 BeadChip. Significant differential methylation was observed within the translocation breakpoint regions on chromosomes 1 and 11. Downstream analysis identified additional regions of differential methylation outwith these chromosomes, while pathway analysis showed terms related to psychiatric disorders and neurodevelopment were enriched amongst differentially methylated genes, in addition to more general terms pertaining to cellular function. Using induced pluripotent stem cell (iPSC) technology, neuronal samples were developed from fibroblasts in a subset of individuals profiled for genome-wide methylation in whole blood (N = 6) with an aim to replicate the significant findings around the breakpoint regions. Here, methylation was profiled using the Infinium HumanMethylation450 BeadChip’s successor: the Infinium MethylationEPIC BeadChip. The results from the blood-based study failed to replicate in the neuronal samples, which could be attributed to low statistical power or tissue-specific factors such as methylation quantitative trait loci. The differences in methylation in the most significantly differentially methylated loci were found to be driven by a single individual, rendering further interpretation of the findings from this analysis difficult without additional samples. Cross-tissue analyses of DNA methylation were performed on blood and neuronal DNA from these six individuals, revealing little correlation between cell types. DISC1 is central to a network of interacting protein partners, including the transcription factor ATF4, and PDE4; both of which are associated with the cAMP signalling pathway. Haploinsufficiency of DISC1 due to the translocation may therefore be disruptive to cAMP-mediated gene expression. In order to identify transcriptomic effects which may be related to the t(1;11) translocation, genome-wide expression profiling was performed in lymphoblastoid cell line RNA from 13 family members. No transcripts were found to be differentially expressed at the genome-wide significant level. A post-hoc power analysis suggested that more samples would be required in order to detect genome-wide significant differential expression. However, imposing a fold-change cut-off to the data identified a number of candidate genes for follow-up analysis, including SORL1: a member of the brain-expressed Sortilin gene family. Sortilin genes have been linked to multiple psychiatric disorders including schizophrenia, bipolar disorder and Alzheimer’s disease. Follow-up analyses of Sortilin family members were performed in a Disc1 mouse model of schizophrenia, containing an amino acid substitution (L100P). Here, developmental gene expression profiling was performed with an additional aim to optimise and validate work performed by others using this mouse model. However, results from these experiments were variable between two independent batches mice tested. Additional investigation of Sortilin family genes was performed using GWAS data from human samples, using machine learning techniques to identify epistatic interactions linked to depression and brain function, revealing no statistically significant interactions. The results presented in this thesis suggest a potential mechanism for differential DNA methylation in the context of chromosomal translocations, and suggests mechanisms whereby increased risk of illness is conferred upon translocation carriers through dysregulation of transcription and DNA methylation.
23

Disc1 Mutant Mice Subjected to Chronic Social Defeat Stress as a Model of Gene-Environment Interaction in Schizophrenia and Depression

Haque, F. Nipa 25 January 2010 (has links)
Human genetic data suggests DISC1 (Disrupted-in-schizophrenia 1) is a susceptibility gene for schizophrenia and depression. Disc1 Q31L-/- mutants show depression-like behaviour and Disc1 L100P-/- mutants schizophrenia-like behaviour. Heterozygous mutants show an intermediate phenotype. In a gene-environment interaction study, we exposed heterozygotes to chronic social defeat (CSD) stress and phenotyped behaviour. Disc1, Bdnf(III) and Pde4b mRNA levels were also measured. Moreover, as epigenetic mechanisms may mediate some effects of CSD, we also exposed wildtype mice to CSD concurrently with the histone deacetylase inhibitor valproate. We found that CSD increased anxiety in L100P-/+ mutants, and that levels of Disc1, Bdnf(III) and Pde4b mRNA were higher in this mutant. Valproate treatment did not correct CSD-induced behavioural changes. In conclusion, we have demonstrated an interaction between a strong susceptibility gene for psychiatric disease and an environmental manipulation similar to stressors known to affect mental illness.
24

Disc1 Mutant Mice Subjected to Chronic Social Defeat Stress as a Model of Gene-Environment Interaction in Schizophrenia and Depression

Haque, F. Nipa 25 January 2010 (has links)
Human genetic data suggests DISC1 (Disrupted-in-schizophrenia 1) is a susceptibility gene for schizophrenia and depression. Disc1 Q31L-/- mutants show depression-like behaviour and Disc1 L100P-/- mutants schizophrenia-like behaviour. Heterozygous mutants show an intermediate phenotype. In a gene-environment interaction study, we exposed heterozygotes to chronic social defeat (CSD) stress and phenotyped behaviour. Disc1, Bdnf(III) and Pde4b mRNA levels were also measured. Moreover, as epigenetic mechanisms may mediate some effects of CSD, we also exposed wildtype mice to CSD concurrently with the histone deacetylase inhibitor valproate. We found that CSD increased anxiety in L100P-/+ mutants, and that levels of Disc1, Bdnf(III) and Pde4b mRNA were higher in this mutant. Valproate treatment did not correct CSD-induced behavioural changes. In conclusion, we have demonstrated an interaction between a strong susceptibility gene for psychiatric disease and an environmental manipulation similar to stressors known to affect mental illness.

Page generated in 0.0458 seconds