• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 18
  • 18
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Vliv pdorysn©ho situovn­ na kapacitu pelivu v prizmatick©m korytÄ / Influence of plan situating of weir in the prismatic channel on discharging capacity

Lukek, Petr January 2016 (has links)
This diploma thesis is focused on determination of plan situating influence of weir discharging capacity. The part of this work is a summary of the information about weirs, principally about determination of discharging capacity on normal weirs, plan deflected and plan radius weirs. Executed model research, which deals with determination of plan situating influence on discharging capacity plan deflected and plan radius weirs in comparison to normal weir, is evaluated in another part of this work. The research is also dealing with influence of aeration of the space under down surface of free jet and influence of downstream water level on discharging capacity. This work compares the results of executed research with available knowledge of other authors, who have dealt with determination of discharging capacity on weirs with different plan situating.
42

THERMAL MANAGEMENT TECHNOLOGIES OF LITHIUM-ION BATTERIES APPLIED FOR STATIONARY ENERGY STORAGE SYSTEMS : Investigation on the thermal behavior of Lithium-ion batteries

Ali, Haider Adel Ali, Abdeljawad, Ziad Namir January 2020 (has links)
Batteries are promising sources of green and sustainable energy that have been widely used in various applications. Lithium-ion batteries (LIBs) have an important role in the energy storage sector due to its high specific energy and energy density relative to other rechargeable batteries. The main challenges for keeping the LIBs to work under safe conditions, and at high performance are strongly related to the battery thermal management. In this study, a critical literature review is first carried out to present the technology development status of the battery thermal management system (BTMS) based on air and liquid cooling for the application of battery energy storage systems (BESS). It was found that more attention has paid to the BTMS for electrical vehicle (EV) applications than for stationary BESS. Even though the active forced air cooling is the most commonly used method for stationary BESS, limited technical information is available. Liquid cooling has widely been used in EV applications with different system configurations and cooling patterns; nevertheless, the application for BESS is hard to find in literature.To ensure and analyze the performance of air and liquid cooling system, a battery and thermal model developed to be used for modeling of BTMS. The models are based on the car company BMW EV battery pack, which using Nickel Manganese Cobalt Oxide (NMC) prismatic lithium-ion cell. Both air and liquid cooling have been studied to evaluate the thermal performance of LIBs under the two cooling systems.According to the result, the air and liquid cooling are capable of maintaining BESS under safe operation conditions, but with considering some limits. The air-cooling is more suitable for low surrounding temperature or at low charging/discharge rate (C-rate), while liquid cooling enables BESS to operate at higher C-rates and higher surrounding temperatures. However, the requirement on the maximum temperature difference within a cell will limits the application of liquid cooling in some discharge cases at high C-rate. Finally, this work suggests that specific attention should be paid to the pack design. The design of the BMW pack is compact, which makes the air-cooling performance less efficient because of the air circulation inside the pack is low and liquid cooling is more suitable for this type of compact battery pack.
43

Interactions of Connected Electric Vehicles with Modern Power Grids in Smart Cities

Alghamdi, Turki 10 August 2021 (has links)
In a smart city, it is vital to provide a clean and green environment by curbing air pollution and greenhouse gas emissions (GHGs) from transportation. As a recent action from many governments aiming to minimize transportation’s pollution upon the climate, new plans have been announced to ban cars with gas engines throughout the world. Therefore, it is anticipated that the presence of electric vehicles (EVs) will grow very fast globally. Consequently, the necessity to establish electric vehicle supply equipment (EVSE) in the smart city through public charging stations is growing incrementally year by year. However, the EV charging process via EVSE which is primarily connected to the power grid will put high pressure upon the centralized power grid, especially during peak demand periods. Increasing the power production of power grid will increase the environmental impact. Therefore, it is fundamental for the smart city to be equipped with a modern power grid to cope with the traditional power grid’s drawbacks. In this thesis, we conduct an in-depth analysis of the problem of EVs’ interaction with the modern power grid in a smart city to manage and control EV charging and discharging processes. We also present various approaches and mechanisms toward identifying and investigating these challenges and requirements to manage the power demand. We propose novel solutions, namely Decentralized-EVSE (D-EVSE), for EVs’ charging and discharging processes based on Renewable Energy Sources (RESs) and an energy storage system. We present two algorithms to manage the interaction between EVs and D-EVSE while maximizing EV drivers’ satisfaction in terms of reducing the waiting time for charging or discharging services and minimizing the stress placed on D-EVSE. We propose an optimization model based on Game Theory (GT) to manage the interaction between EVs and D-EVSE. We name this the decentralized-GT (D-GT) model. This model aims to find the optimal solution for EVs and D-EVSE based on the concept of win-win. We design a decentralized profit maximization algorithm to help D-EVSE take profit from the electricity price variation during the day when selling or buying electricity respectively to EVs or from the grid or EVs as discharging processes. We implement different scenarios to these models and show through analytical and simulation results that our proposed models help to minimize the D-EVSE stress level, increase the D-EVSE sustainability, maximize the D-EVSE profit, as well as maximize EV drivers’ satisfaction and reduce EVs’ waiting time.
44

Fast deep discharging using a controllable load as pretreatment for EV battery recycling : A study on efficacy, speed, and safety / Snabb djupurladdning med en kontrollerbar belastning som förbehandling för återvinning av batterier i elbilar : En studie av effektivitet, hastighet och säkerhet

Van Genechten, Lucas January 2023 (has links)
In response to the present and projected growth of the EV industry, the development of a large-scale, reliable and efficient lithium-ion battery recycling sector is vital to ensure circularity of the embedded valuable metals and ensure overall sustainability of the technology. One of the main recycling procedures under development is based on hydrometallurgy. As a pretreatment step before lithium-ion batteries can undergo this process, they have to be deactivated to prevent uncontrolled release of the contained electrical energy. This deactivation step is often performed by deep discharging batteries to 0.0 V, instead of the usual lower cut-off around 3.0 V. Usually, deep discharging is performed by connection to resistors or through submersion in a salt solution. However, due to the discharge current derating proportionally to the terminal voltage, this procedure can be quite slow, especially if considerable rebound voltages are to be prevented. This work explores the feasibility of a faster discharge procedure in terms of discharge speed, effectiveness, and safety. The proposed procedure entails deep discharging at constant current using a controllable load, followed by applying an external short-circuit immediately. The C-rate during constant current discharging is varied to study its effects. The short-circuit is applied at a terminal voltage of 0.0 V or 1.0 V. The safety of both process steps is assessed experimentally. The main safety risks that are reviewed are the temperature rise and subsequent risk of thermal runaway, as well as the risk of electrolyte leakage due to pressure increase and swelling. In the experimental work, two types of large format prismatic NMC811 cells are deep discharged starting from an SoC of 0%. The experiments are limited to single cells. It is found that an additional 4% of additional capacity is available in the deep discharging region for a stationary cell at 0% SoC. The risk of thermal runaway is assessed as low based on the temperature measurements and a literature review. To investigate the rise in pressure, the thickness of all cells are measured, and the in situ pressure is measured for three samples. The risk for electrolyte leakage is assessed as low. The rebound voltage and cell thickness are followed up to one week after the discharge procedure. After a short-circuit of 30 minutes, the rebound voltage of all cells is near 2.0 V, but a slightly longer short circuit duration would be necessary to reliably achieve this threshold. The total procedure time is much shorter than those of alternative discharge procedures, while still remaining safe. / Som svar på den nuvarande och förväntade tillväxten inom elbilsindustrin är utvecklingen av en storskalig, tillförlitlig och effektiv återvinningssektor för litiumjonbatterier avgörande för att säkerställa cirkularitet för de inbäddade värdefulla metallerna och säkerställa teknikens övergripande hållbarhet. En av de viktigaste återvinningsmetoderna som är under utveckling baseras på hydrometallurgi. Som ett förbehandlingssteg innan litiumjonbatterier kan genomgå denna process måste de avaktiveras för att förhindra okontrollerad frisättning av den elektriska energi som de innehåller. Detta deaktiveringssteg utförs ofta genom djupurladdning av batterierna till 0.0 V, istället för den vanliga lägre gränsen runt 3.0 V. Vanligtvis utförs djupurladdning genom anslutning till resistorer eller genom nedsänkning i en saltlösning. Eftersom urladdningsströmmen avtar proportionellt mot terminalspänningen kan denna procedur dock vara ganska långsam, särskilt om man vill förhindra stora återkopplingsspänningar. I detta arbete undersöks genomförbarheten av en snabbare urladdningsprocedur när det gäller urladdningshastighet, effektivitet och säkerhet. Det föreslagna förfarandet innebär djupurladdning vid konstant ström med en kontrollerbar belastning, följt av omedelbar applicering av en extern kortslutning. C-hastigheten under urladdning med konstant ström varieras för att studera dess effekter. Kortslutningen appliceras vid en terminalspänning på 0.0 V eller 1.0 V. Säkerheten för båda processtegen bedöms experimentellt. De huvudsakliga säkerhetsriskerna som granskas är temperaturökningen och den efterföljande risken för termisk rusning, samt risken för elektrolytläckage på grund av tryckökning och svullnad. I det experimentella arbetet djupurladdas två typer av prismatiska NMC811-celler i storformat från en SoC på 0%. Experimenten är begränsade till enstaka celler. Det visade sig att ytterligare 4% kapacitet finns tillgänglig i djupurladdningsområdet för en stationär cell vid 0% SoC. Risken för termisk urladdning bedöms som låg baserat på temperaturmätningarna och en litteraturgenomgång. För att undersöka tryckökningen mäts tjockleken på alla celler och in situ-trycket mäts för tre prover. Risken för elektrolytläckage bedöms som låg. Återkopplingsspänningen och cellernas tjocklek följs upp upp till en vecka efter urladdningsproceduren. Efter en kortslutning på 30 minuter är returspänningen för alla celler nära 2.0 V, men en något längre kortslutningstid skulle vara nödvändig för att tillförlitligt uppnå detta tröskelvärde. Den totala tiden för proceduren är mycket kortare än för alternativa urladdningsprocedurer, samtidigt som den fortfarande är säker.
45

Rekonstrukce elektrické části vytloukacího roštu / Reconstruction of discharging shakeout machine electric installation

Bednář, Vojtěch January 2016 (has links)
This Diploma work is concerned with the design of project documentation for discharging shakeout machine electric installation. This work continues in the Semestral project 2 in which the background of a new machine was made. Then, this work deals with the replacement of a switch room with required devices including the design of a new connecting cables and power streams. In the first part, the work deals with the control part of the device and the design of control and signal cables including the product documentation of the device. In the second part, the work deals with the proposal of building electro installation in which a new lighting and its use is described. The last part focuses on the coordination during the realization of a suggested device. In this part, all problems coming from the particular working procedures including a proposal of possible solutions are described. According to the project documentation and following realization, the documentation of final concept reflecting the real status of the device is described.
46

Předmět plnění a odpovědnost za porušení povinností ze smluv o dílo v mezinárodním obchodním styku / Subject matter of performance and liability for a breach of obligations from contracts for work in international trade

Béreš, Ján January 2016 (has links)
This dissertation deals with how the subject matter of performance under a contract for work is defined and issues related to formulating the rights and obligations ensuing therefrom. At the same time, it seeks common legal sources existing across national laws which provide definitions thereof. It attempts to find a common definition of contracts for work and how they differ from other similar contracts. It further defines some common basic features and problems related to contracts for work which apply in international trade or in cases where parties decide to formulate their contract by reference to international contract conditions. In that context, it primarily refers to construction contracts as the most common type of contract for work in international trade. At the same time, it focuses on the possible consequences of a breach of contract and emphasizes some parties' claims ensuing therefrom. Moreover, this work examines the definition of work defects and conditions for asserting claims as a specific topic, which relates to the definition of the subject matter of a contract for work and its basic features. Key words: contract for work, construction work, contractor, employer, international trade, sources for determining obligations, international contract conditions, subject matter of...

Page generated in 0.102 seconds