• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 24
  • 13
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 190
  • 190
  • 113
  • 78
  • 65
  • 42
  • 39
  • 28
  • 27
  • 26
  • 24
  • 22
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods

Of, Günther, Rodin, Gregory J., Steinbach, Olaf, Taus, Matthias 19 October 2012 (has links) (PDF)
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element methods are used. Error and stability analysis is presented for some of the methods. Numerical examples suggest that all three methods exhibit very similar convergence properties, consistent with available theoretical results.
92

THE APPLICATION OF DISCONTINUOUS GALKERIN FINITE ELEMENT TIME-DOMAIN METHOD IN THE DESIGN, SIMULATION AND ANALYSIS OF MODERN RADIO FREQUENCY SYSTEMS

Zhao, Bo 01 January 2011 (has links)
The discontinuous Galerkin finite element time-domain (DGFETD) method has been successfully applied to the solution of the coupled curl Maxwell’s equations. In this dissertation, important extensions to the DGFETD method are provided, including the ability to model lumped circuit elements and the ability to model thin-wire structures within a discrete DGFETD solution. To this end, a hybrid DGFETD/SPICE formulation is proposed for high-frequency circuit simulation, and a hybrid DGFETD/Thin-wire formulation is proposed for modeling thin-wire structures within a three-dimensional problem space. To aid in the efficient modeling of open-region structures, a Complex Frequency Shifted-Perfectly Matched Layer (CFS-PML) absorbing medium is applied to the DGFETD method for the first time. An efficient CFS-PML method that reduces the computational complexity and improves accuracy as compared to previous PML formulations is proposed. The methods have been successfully implemented, and a number of test cases are provided that validate the proposed methods. The proposed hybrid formulations and the new CFS-PML formulation dramatically enhances the ability of the DGFETD method to be efficiently applied to simulate complex, state of the art radio frequency systems.
93

High-Order Numerical Methods in Lake Modelling

Steinmoeller, Derek January 2014 (has links)
The physical processes in lakes remain only partially understood despite successful data collection from a variety of sources spanning several decades. Although numerical models are already frequently employed to simulate the physics of lakes, especially in the context of water quality management, improved methods are necessary to better capture the wide array of dynamically important physical processes, spanning length scales from ~ 10 km (basin-scale oscillations) - 1 m (short internal waves). In this thesis, high-order numerical methods are explored for specialized model equations of lakes, so that their use can be taken into consideration in the next generation of more sophisticated models that will better capture important small scale features than their present day counterparts. The full three-dimensional incompressible density-stratified Navier-Stokes equations remain too computationally expensive to be solved for situations that involve both complicated geometries and require resolution of features at length-scales spanning four orders of magnitude. The main source of computational expense lay with the requirement of having to solve a three-dimensional Poisson equation for pressure at every time-step. Simplified model equations are thus the only way that numerical lake modelling can be carried out at present time, and progress can be made by seeking intelligent parameterizations as a means of capturing more physics within the framework of such simplified equation sets. In this thesis, we employ the long-accepted practice of sub-dividing the lake into vertical layers of different constant densities as an approximation to continuous vertical stratification. We build on this approach by including weakly non-hydrostatic dispersive correction terms in the model equations in order to parameterize the effects of small vertical accelerations that are often disregarded by operational models. Favouring the inclusion of weakly non-hydrostatic effects over the more popular hydrostatic approximation allows these models to capture the emergence of small-scale internal wave phenomena, such as internal solitary waves and undular bores, that are missed by purely hydrostatic models. The Fourier and Chebyshev pseudospectral methods are employed for these weakly non-hydrostatic layered models in simple idealized lake geometries, e.g., doubly periodic domains, periodic channels, and annular domains, for a set of test problems relevant to lake dynamics since they offer excellent resolution characteristics at minimal memory costs. This feature makes them an excellent benchmark to compare other methods against. The Discontinuous Galerkin Finite Element Method (DG-FEM) is then explored as a mid- to high-order method that can be used in arbitrary lake geometries. The DG-FEM can be interpreted as a domain-decomposition extension of a polynomial pseudospectral method and shares many of the same attractive features, such as fast convergence rates and the ability to resolve small-scale features with a relatively low number of grid points when compared to a low-order method. The DG-FEM is further complemented by certain desirable attributes it shares with the finite volume method, such as the freedom to specify upwind-biased numerical flux functions for advection-dominated flows, the flexibility to deal with complicated geometries, and the notion that each element (or cell) can be regarded as a control volume for conserved fluid quantities. Practical implementation details of the numerical methods used in this thesis are discussed, and the various modelling and methodology choices that have been made in the course of this work are justified as the difficulties that these choices address are revealed to the reader. Theoretical calculations are intermittently carried out throughout the thesis to help improve intuition in situations where numerical methods alone fall short of giving complete explanations of the physical processes under consideration. The utility of the DG-FEM method beyond purely hyperbolic systems is also a recurring theme in this thesis. The DG-FEM method is applied to dispersive shallow water type systems as well as incompressible flow situations. Furthermore, it is employed for eigenvalue problems where orthogonal bases must be constructed from the eigenspaces of elliptic operators. The technique is applied to the problem calculating the free modes of oscillation in rotating basins with irregular geometries where the corresponding linear operator is not self-adjoint.
94

Acoustique modale et stabilité linéaire par une méthode numérique avancée : Cas d'un conduit traité acoustiquement en présence d'un écoulement / Modal acoustics and linear stability by an advanced numerical method. : Application to lined flow ducts

Pascal, Lucas 06 November 2013 (has links)
Ce travail de thèse s’inscrit dans l’effort de réduction des nuisances sonores dues à la soufflante d’unréacteur double-flux à l’aide de matériaux absorbants acoustiques, appelés communément «liners». Afind’optimiser ces traitements acoustiques, il convient d’étudier en détail la physique de la propagationacoustique en présence de liner. De plus, il s’agit d’améliorer la compréhension des instabilités hydrodynamiquespouvant se développer sur un liner sous des conditions particulières et possiblement génératricesde bruit. Ce travail de thèse a consisté à développer un code de calcul en formulation Galerkin discontinuepour l’analyse modale et la stabilité dans un conduit traité acoustiquement, code qui a été appliqué à desconfigurations réalistes, en considérant une section transverse ou longitudinale d’un conduit. Les étudesmodales réalisées dans la section transverse ont apporté des informations sur la propagation acoustiquedans une nacelle de turbofan avec des discontinuités du traitement acoustique («splices»), ainsi que dansle banc B2A de l’ONERA. Les calculs dans la section longitudinale ont nécessité l’implantation de conditionsaux limites PML pour tronquer le domaine de calcul, ainsi que d’une condition aux limites sur leliner, modélisée en domaine temporel à partir d’une extension de travaux existants dans la littérature.Avec ces outils, le code a permis de mettre en évidence une dynamique de type amplificateur de bruit dueau développement d’une instabilité hydrodynamique sur le liner en présence d’écoulement cisaillé ainsiqu’un rayonnement acoustique en amont et en aval du conduit dû à cette instabilité. / The current work deals with the reduction of aircraft engine fan noise using acoustic lining. In orderto optimise these liners, it is necessary to deeply understand the physics of acoustic wave propagation in lined ducts and to have a better knowledge of the hydrodynamic instabilities existing under particular conditions and likely to radiate noise. This work is about the development of a discontinuous Galerkin solver for modal and stability analysis in lined flow duct and the application of this solver to realistic configurations by considering the transverse or longitudinal section of a duct. The modal studies in the transverse section brought informations on acoustic propagation in a turbofan nacelle with lining discontinuities (“splices”) and in the B2A bench of ONERA. The computation in the longitudinal section of a duct required the implementation of PML boundary conditions in order to truncate the computational domain and of a boundary condition at the lined wall, modeled in temporal domain by the enhancement of a method published in the literature. With these features, the application of the solver highlighted a noise amplifier dynamics caused by the development of a hydrodynamic instability on the liner with sheared flow and a noise radiation mechanism upstream and downstream the lined section.
95

Finite Difference and Discontinuous Galerkin Methods for Wave Equations

Wang, Siyang January 2017 (has links)
Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and in solids, modeled by the acoustic wave equation and the elastic wave equation, respectively. In real-world applications, waves often propagate in heterogeneous media with complex geometries, which makes it impossible to derive exact solutions to the governing equations. Alternatively, we seek approximated solutions by constructing numerical methods and implementing on modern computers. An efficient numerical method produces accurate approximations at low computational cost. There are many choices of numerical methods for solving partial differential equations. Which method is more efficient than the others depends on the particular problem we consider. In this thesis, we study two numerical methods: the finite difference method and the discontinuous Galerkin method. The finite difference method is conceptually simple and easy to implement, but has difficulties in handling complex geometries of the computational domain. We construct high order finite difference methods for wave propagation in heterogeneous media with complex geometries. In addition, we derive error estimates to a class of finite difference operators applied to the acoustic wave equation. The discontinuous Galerkin method is flexible with complex geometries. Moreover, the discontinuous nature between elements makes the method suitable for multiphysics problems. We use an energy based discontinuous Galerkin method to solve a coupled acoustic-elastic problem.
96

Méthode multi-échelle pour la simulation d'écoulements miscibles en milieux poreux / Multiscale method for simulating miscible displacements in porous media

Konaté, Aboubacar 12 January 2017 (has links)
L'objet de cette thèse est l'étude et la mise en œuvre d'une méthode d’éléments finis multi-échelles pour la simulation d'écoulements miscibles en milieux poreux. La définition des fonctions de base multi-échelles suit l'idée introduite par F. Ouaki. La nouveauté de ce travail consiste à combiner cette approche multi-échelle avec des éléments finis de type Galerkine Discontinus (DG) de façon à pouvoir utiliser ces nouveaux éléments sur des maillages non-conformes composés de mailles de formes diverses. Nous rappelons, dans un premier temps, le principe des méthodes DG et montrons comment ces méthodes peuvent être utilisées pour discrétiser une équation de convection-diffusion instationnaire identique à celle rencontrée dans le problème d'écoulement considéré dans ce travail. Après avoir vérifié l'existence et l'unicité d'une solution à ce problème, nous redémontrons la convergence des méthodes DG vers cette solution en établissant une estimation d'erreur a priori. Nous introduisons, ensuite, les éléments finis multi-échelles non conformes et détaillons leur mise en œuvre sur ce problème de convection-diffusion. En supposant les conditions aux limites et les paramètres du problème périodiques, nous montrons une nouvelle estimation d'erreur a priori pour cette méthode. Dans une seconde partie, nous considérons le problème d'écoulement complet où l'équation considérée dans la première partie est résolue de manière couplée avec l'équation de Darcy. Nous introduisons différents cas tests inspirés de modèles d'écoulements rencontrés en géosciences et comparons les solutions obtenues avec les deux méthodes DG, à savoir la méthode classique utilisant un seul maillage et la méthode étudiée ici. Nous proposons de nouvelles conditions aux limites pour la résolution des problèmes de cellule qui permettent, par rapport à des conditions aux limites linéaires plus classiquement utilisées, de mieux reproduire les variations des solutions le long des interfaces du maillage grossier. Les résultats de ces tests montrent que la méthode multi-échelle proposée permet de calculer des solutions proches de celles obtenues avec la méthode DG sur un seul maillage et de réduire, de façon significative, la taille du système linéaire à résoudre à chaque pas de temps. / This work deals with the study and the implementation of a multiscale finite element method for the simulation of miscible flows in porous media. The definition of the multiscale basis functions is based on the idea introduced by F. Ouaki. The novelty of this work lies in the combination of this multiscale approach with Discontinuous Galerkin methods (DG) so that these new finite elements can be used on nonconforming meshes composed of cells with various shapes. We first recall the basics of DG methods and their application to the discretisation of a convection-diffusion equation that arises in the flow problem considered in this work. After establishing the existence and uniqueness of a solution to the continuous problem, we prove again the convergence of DG methods towards this solution by establishing an a priori error estimate. We then introduce the nonconforming multiscale finite element method and explain how it can be implemented for this convection-diffusion problem. Assuming that the boundary conditions and the parameters of the problem are periodic, we prove a new a priori error estimate for this method. In a second part, we consider the whole flow problem where the equation, studied in the first part of that work, is coupled and simultaneously solved with Darcy equation. We introduce various synthetic test cases which are close to flow problems encountered in geosciences and compare the solutions obtained with both DG methods, namely the classical method based on the use of a single mesh and the one studied here. For the resolution of the cell problems, we propose new boundary conditions which, compared to classical linear conditions, allow us to better reproduce the variations of the solutions on the interfaces of the coarse mesh. The results of these tests show that the multiscale method enables us to calculate solutions which are close to the ones obtained withDG methods on a single mesh and also enables us to reduce significantly the size of the linear system that has to be solved at each time step.
97

Mathematical analysis and numerical approximation of flow models in porous media / Analyse mathématique et approximation numérique de modèles d'écoulements en milieux poreux

Brihi, Sarra 13 December 2018 (has links)
Cette thèse est consacrée à l'étude des équations du Darcy Brinkman Forchheimer (DBF) avec des conditions aux limites non standards. Nous montrons d'abord l'existence de différents type de solutions (faible, forte) correspondant au problème DBF stationnaire dans un domaine simplement connexe avec des conditions portants sur la composante normale du champ de vitesse et la composante tangentielle du tourbillon. Ensuite, nous considérons le système Brinkman Forchheimer (BF) avec des conditions sur la pression dans un domaine non simplement connexe. Nous prouvons que ce problème est bien posé ainsi que l'existence de la solution forte. Nous établissons la régularité de la solution dans les espaces L^p pour p >= 2.L'étude et l'approximation du problème DBF non stationnaire est basée sur une approche pseudo-compressibilité. Une estimation d'erreur d'ordre deux est établie dans le cas o\`u les conditions aux limites sont de types Dirichlet ou Navier.Enfin, une méthode d'éléments finis Galerkin Discontinue est proposée et la convergence établie concernant le problème DBF linéarisé et le système DBF non linéaire avec des conditions aux limites non standard. / This thesis is devoted to Darcy Brinkman Forchheimer (DBF) equations with a non standard boundary conditions. We prove first the existence of different type of solutions (weak, strong) of the stationary DBF problem in a simply connected domain with boundary conditions on the normal component of the velocity field and the tangential component of the vorticity. Next, we consider Brinkman Forchheimer (BF) system with boundary conditions on the pressure in a non simply connected domain. We prove the well-posedness and the existence of a strong solution of this problem. We establish the regularity of the solution in the L^p spaces, for p >= 2.The approximation of the non stationary DBF problem is based on the pseudo-compressibility approach. The second order's error estimate is established in the case where the boundary conditions are of type Dirichlet or Navier. Finally, the finite elements Galerkin Discontinuous method is proposed and the convergence is settled concerning the linearized DBF problem and the non linear DBF system with a non standard boundary conditions.
98

Numerical Modeling and Computation of Radio Frequency Devices

Lu, Jiaqing January 2018 (has links)
No description available.
99

A Numerical Study of Multi-class Traffic Flow Models

CHEN, YIDI 30 September 2020 (has links)
No description available.
100

Analýza numerického řešení Forchheimerova modelu / Analysis of the numerical solution of Forchheimer model

Gálfy, Ivan January 2021 (has links)
The thesis is dedicated to the study and numerical analysis of the non- linear flows in the porous media, using general Forchheimer models. In the numerical analysis, the local discontinuous Galerkin method is chosen. The first part of the paper is dedicated to the derivation of the studied equations based on the physical motivation and summarizing the theory needed for the further analysis. Core of the thesis consists of the introduction of the chosen discretization method and the derivation of the main stability and a priory error estimates, optimal for the linear ansatz functions. At the end we present a couple of numerical experiments to verify the results. 1

Page generated in 0.4366 seconds