• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • Tagged with
  • 144
  • 144
  • 144
  • 69
  • 58
  • 35
  • 32
  • 23
  • 19
  • 18
  • 18
  • 18
  • 16
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Double Domination of Complementary Prisms.

Vaughan, Lamont D 12 August 2008 (has links) (PDF)
The complementary prism of a graph G is obtained from a copy of G and its complement G̅ by adding a perfect matching between the corresponding vertices of G and G̅. For any graph G, a set D ⊆ V (G) is a double dominating set (DDS) if that set dominates every vertex of G twice. The double domination number, denoted γ×2(G), is the cardinality of a minimum double dominating set of G. We have proven results on graphs of small order, specific families and lower bounds on γ×2(GG̅).
102

Finding Edge and Vertex Induced Cycles within Circulants.

Wooten, Trina Marcella 12 August 2008 (has links) (PDF)
Let H be a graph. G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H). The subgraphs of H can be used to determine whether H is planar, a line graph, and to give information about the chromatic number. In a recent work by Beeler and Jamison [3], it was shown that it is difficult to obtain an automorphic decomposition of a triangle-free graph. As many of their examples involve circulant graphs, it is of particular interest to find triangle-free subgraphs within circulants. As a cycle with at least four vertices is a canonical example of a triangle-free subgraph, we concentrate our efforts on these. In this thesis, we will state necessary and sufficient conditions for the existence of edge induced and vertex induced cycles within circulants.
103

Decompositions, Packings, and Coverings of Complete Directed Gaphs with a 3-Circuit and a Pendent Arc.

Gwellem, Chrys 14 August 2007 (has links) (PDF)
In the study of Graph theory, there are eight orientations of the complete graph on three vertices with a pendant edge, K3 ∪ {e}. Two of these are the 3-circuit with a pendant arc and the other six are transitive triples with a pendant arc. Necessary and sufficient conditions are given for decompositions, packings, and coverings of the complete digraph with the two 3-circuit with a pendant arc orientations.
104

Decomposition, Packings and Coverings of Complete Digraphs with a Transitive-Triple and a Pendant Arc.

Lewenczuk, Janice Gail 15 December 2007 (has links) (PDF)
In the study of design theory, there are eight orientations of the complete graph on three vertices with a pendant edge, K3∪{e}. Two of these are the 3-circuit with a pendant arc and the other six are transitive triples with a pendant arc. Necessary and sufficient conditions are given for decompositions, packings and coverings of the complete digraph with each of the six transitive triples with a pendant arc.
105

Alliance Partitions in Graphs.

Lachniet, Jason 05 May 2007 (has links) (PDF)
For a graph G=(V,E), a nonempty subset S contained in V is called a defensive alliance if for each v in S, there are at least as many vertices from the closed neighborhood of v in S as in V-S. If there are strictly more vertices from the closed neighborhood of v in S as in V-S, then S is a strong defensive alliance. A (strong) defensive alliance is called global if it is also a dominating set of G. The alliance partition number (respectively, strong alliance partition number) is the maximum cardinality of a partition of V into defensive alliances (respectively, strong defensive alliances). The global (strong) alliance partition number is defined similarly. For each parameter we give both general bounds and exact values. Our major results include exact values for the alliance partition number of grid graphs and for the global alliance partition number of caterpillars.
106

Chromatic Number of the Alphabet Overlap Graph, <em>G</em>(2, <em>k </em>, <em>k</em>-2).

Farley, Jerry Brent 15 December 2007 (has links) (PDF)
A graph G(a, k, t) is called an alphabet overlap graph where a, k, and t are positive integers such that 0 ≤ t < k and the vertex set V of G is defined as, V = {v : v = (v1v2...vk); vi ∊ {1, 2, ..., a}, (1 ≤ i ≤ k)}. That is, each vertex, v, is a word of length k over an alphabet of size a. There exists an edge between two vertices u, v if and only if the last t letters in u equal the first t letters in v or the first t letters in u equal the last t letters in v. We determine the chromatic number of G(a, k, t) for all k ≥ 3, t = k − 2, and a = 2; except when k = 7, 8, 9, and 11.
107

Trees with Unique Minimum Locating-Dominating Sets.

Lane, Stephen M 06 May 2006 (has links) (PDF)
A set S of vertices in a graph G = (V, E) is a locating-dominating set if S is a dominating set of G, and every pair of distinct vertices {u, v} in V - S is located with respect to S, that is, if the set of neighbors of u that are in S is not equal to the set of neighbors of v that are in S. We give a construction of trees that have unique minimum locating-dominating sets.
108

Vector Partitions

French, Jennifer 01 May 2018 (has links) (PDF)
Integer partitions have been studied by many mathematicians over hundreds of years. Many identities exist between integer partitions, such as Euler’s discovery that every number has the same amount of partitions into distinct parts as into odd parts. These identities can be proven using methods such as conjugation or generating functions. Over the years, mathematicians have worked to expand partition identities to vectors. In 1963, M. S. Cheema proved that every vector has the same number of partitions into distinct vectors as into vectors with at least one component odd. This parallels Euler’s result for integer partitions. The primary purpose of this paper is to use generating functions to prove other vector partition identities that parallel results of integer partitions.
109

The Expected Number of Patterns in a Random Generated Permutation on [n] = {1,2,...,n}

Fokuoh, Evelyn 01 August 2018 (has links) (PDF)
Previous work by Flaxman (2004) and Biers-Ariel et al. (2018) focused on the number of distinct words embedded in a string of words of length n. In this thesis, we will extend this work to permutations, focusing on the maximum number of distinct permutations contained in a permutation on [n] = {1,2,...,n} and on the expected number of distinct permutations contained in a random permutation on [n]. We further considered the problem where repetition of subsequences are as a result of the occurrence of (Type A and/or Type B) replications. Our method of enumerating the Type A replications causes double counting and as a result causes the count of the number of distinct sequences to go down.
110

Taking Notes: Generating Twelve-Tone Music with Mathematics

Molder, Nathan 01 May 2019 (has links) (PDF)
There has often been a connection between music and mathematics. The world of musical composition is full of combinations of orderings of different musical notes, each of which has different sound quality, length, and em phasis. One of the more intricate composition styles is twelve-tone music, where twelve unique notes (up to octave isomorphism) must be used before they can be repeated. In this thesis, we aim to show multiple ways in which mathematics can be used directly to compose twelve-tone musical scores.

Page generated in 0.0908 seconds