• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical solution of the stochastic collection equation

Simmel, Martin 19 December 2016 (has links) (PDF)
The Linear Discrete Method (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) is used to solve the Stochastic Collection Equation (SCE) numerically. Comparisons are made to the Method of Moments (MOM; TzIVION ET AL. 1999) which is suggested as a reference for numerical solutions of the SCE. Simulations for both methods are shown for the GoLOVIN kernel (for which an analytical solution is available) and the hydrodynamic kernel after LONG (1974) as it is used by TZIVION ET AL. (1999). Different bin resolutions are investigated and the simulation times are compared. In addition, LDM simulations using the hydrodynamic kernel after BÖHM (1992b) are presented. The results show that for the GoLOVIN kernel, LDM is slightly closer to the analytic solution than MOM. For the LONG kernel, the low resolution results of LDM and MOM are of similar quality compared to the reference solution. For the BÖHM kernel, only LDM simulations were carried out which show good correspondence between low and high resolution results. / Die lineare diskrete Methode (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) wird dazu benutzt, die Gleichung für stochastisches Einsammeln (stochastic collection equation, SCE) numerisch zu lösen. Dabei werden Vergleiche gezogen zur Methode der Momente (Method of Moments, MOM; TzIVION ET AL. 1999), die als Referenz für numerische Lösungen der SCE vorgeschlagen wurde. Simulationsrechnungen für beide Methoden werden für die Koaleszenzfunktion nach GoLOVIN (für die eine analytische Lösung existiert) und die hydrodynamische Koaleszenzfunktion nach LONG (1974) wie sie von TZIVION ET AL. (1999) verwendet wird, gezeigt. Verschiedene Klassenauflösungen werden untersucht und die Simulationszeiten verglichen. Zusätzlich werden LDM-Simulationen mit der hydrodynamischen Koaleszenzfunktion nach BÖHM (1992b) gezeigt. Die Ergebnisse für die Koaleszenzfunktion nach GoLOVIN zeigen, daß die LDM der analytischen Lösung etwas näher kommt als MOM. Für die Koaleszenzfunktion nach LONG sind die Ergebnisse von LDM und MOM mit niedriger Auflösung von ähnlicher Qualität verglichen mit der Referenzlösung. Für die Koaleszenzfunktion nach BÖHM wurden nur Simulationen mit der LDM durchgeführt, die eine gute Übereinstimmung der Ergebnisse mit niedriger und hoher Auflösung zeigen.
2

Numerical solution of the stochastic collection equation: comparison of the linear discrete method and the method of moments

Simmel, Martin 19 December 2016 (has links)
The Linear Discrete Method (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) is used to solve the Stochastic Collection Equation (SCE) numerically. Comparisons are made to the Method of Moments (MOM; TzIVION ET AL. 1999) which is suggested as a reference for numerical solutions of the SCE. Simulations for both methods are shown for the GoLOVIN kernel (for which an analytical solution is available) and the hydrodynamic kernel after LONG (1974) as it is used by TZIVION ET AL. (1999). Different bin resolutions are investigated and the simulation times are compared. In addition, LDM simulations using the hydrodynamic kernel after BÖHM (1992b) are presented. The results show that for the GoLOVIN kernel, LDM is slightly closer to the analytic solution than MOM. For the LONG kernel, the low resolution results of LDM and MOM are of similar quality compared to the reference solution. For the BÖHM kernel, only LDM simulations were carried out which show good correspondence between low and high resolution results. / Die lineare diskrete Methode (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) wird dazu benutzt, die Gleichung für stochastisches Einsammeln (stochastic collection equation, SCE) numerisch zu lösen. Dabei werden Vergleiche gezogen zur Methode der Momente (Method of Moments, MOM; TzIVION ET AL. 1999), die als Referenz für numerische Lösungen der SCE vorgeschlagen wurde. Simulationsrechnungen für beide Methoden werden für die Koaleszenzfunktion nach GoLOVIN (für die eine analytische Lösung existiert) und die hydrodynamische Koaleszenzfunktion nach LONG (1974) wie sie von TZIVION ET AL. (1999) verwendet wird, gezeigt. Verschiedene Klassenauflösungen werden untersucht und die Simulationszeiten verglichen. Zusätzlich werden LDM-Simulationen mit der hydrodynamischen Koaleszenzfunktion nach BÖHM (1992b) gezeigt. Die Ergebnisse für die Koaleszenzfunktion nach GoLOVIN zeigen, daß die LDM der analytischen Lösung etwas näher kommt als MOM. Für die Koaleszenzfunktion nach LONG sind die Ergebnisse von LDM und MOM mit niedriger Auflösung von ähnlicher Qualität verglichen mit der Referenzlösung. Für die Koaleszenzfunktion nach BÖHM wurden nur Simulationen mit der LDM durchgeführt, die eine gute Übereinstimmung der Ergebnisse mit niedriger und hoher Auflösung zeigen.
3

Modélisation par CFD de la précipation du carbonate de baryum en réacteur à lit fluidisé / CFD simulation of barium carbonate precipitation in a fluidized bed reactor

Fernandez Moguel, Leticia 09 November 2009 (has links)
La mécanique des fluides numérique (CFD) est utilisée pour modéliser la précipitation du carbonate de baryum dans un réacteur à lit fluidisé. L’étude est divisée en deux parties : la modélisation de l’hydrodynamique du réacteur et la modélisation de la précipitation du carbonate de baryum. Pour ces deux parties, les modèles sont validés par l’expérience. Dans la première partie de l’étude, des réactions instantanées de neutralisation en absence et en présence de particules solides inertes sont mises en œuvre dans le réacteur à lit fluidisé. Pour représenter la réaction chimique dans la phase liquide, plusieurs modèles son testés : le modèle Eddy Dissipation (EDM), le modèle Eddy Dissipation Concept (EDC) et le modèle modifié Eddy Dissipation- Multiple Time Scale turbulent mixer (EDM-MTS). Le modèle qui donne la meilleure prédiction de la réaction chimique est choisi : il s’agit du modèle EDM-MTS, qui demande aussi le moins de temps de calcul. Dans la deuxième partie, l’équation de bilan de population est incorporée au code de calcul pour prédire la distribution de taille des particules (PSD). La méthode des classes est implémentée couplée avec le modèle des écoulements multiphasiques Eulérien-Eulérien, le modèle de turbulence k-e et le modèle EDM-MTS. Les cinétiques de précipitation de BaCO3 sont incluses dans le modèle. Des expériences de précipitation du BaCO3 en réacteur à lit fluidisé permettent de valider le modèle de CFD développé. La PSD donnée par le modèle de CFD est en bonne concordance avec les résultats expérimentaux / Computational Fluid Dynamics (CFD) techniques are used to model the precipitation of Barium Carbonate in a solid-liquid fluidized bed reactor. The study is divided in two sections: The hydrodynamic behavior and the barium carbonate precipitation. The CFD model is validated with experimental results for both cases. In the first part, a neutralization reaction in the fluidized bed column with and without solids is carried out. In order to simulate the liquid phase reaction, the Eddy Dissipation Model (EDM), the Eddy Dissipation - Multiple Time Scale turbulent mixer model (EDM-MTS) and the Eddy Dissipation Concept (EDC) reaction models are tested. The model EDM-MTS is chosen for giving the best approach and for being the less computationally expensive. In the second part, the population balance equation is added to the model in order to calculate the Particle Size Distribution (PSD) in the fluidized bed reactor. The discrete method is chosen to solve the population balance equation coupled with the multi-phase Eulerian-Eulerian model, the k-e turbulence model and the EDM-MST model. The nucleation, growth and aggregation kinetics of BaCO3 are included in the precipitation model. The experimental BaCO3 precipitations realized in a fluidized bed reactor allowed the CFD precipitation model validation. The PSD obtained by CFD are in good agreement with the experimental PSD

Page generated in 0.0645 seconds