Spelling suggestions: "subject:"disjoncteur DC"" "subject:"disjoncteurs DC""
1 |
Hierarchical control scheme for multi-terminal high voltage direct current power networks / Commande hiérarchique de réseaux multi-terminaux à courant continu et haute tensionJimenez Carrizosa, Miguel 10 April 2015 (has links)
Cette thèse traite de la commande hiérarchique de réseaux à courant continu multi-terminaux à haute tension (MT-HVDC) intégrant des sources d'énergie renouvelables à grande échelle. Le schéma de contrôle proposé est composé de quatre ‘couches’ : le contrôle local où se trouvent les convertisseurs de puissance, avec une échelle de temps de l’ordre de la milliseconde ; le contrôle primaire qui est décentralisé et appliqué à plusieurs terminaux avec une échelle du temps de l’ordre de la seconde ; un niveau de commande où la communication est prise en compte et où l’approche de Modèle du Commande Prédictive (MPC) assure la planification de la tension et de la puissance à leur état d'équilibre, pour l'ensemble du système; enfin, le contrôleur de niveau supérieur, qui est principalement basé sur les techniques d'optimisation, où les aspects économiques sont pris en compte (il s’agit du réglage dit tertiaire).Au niveau des convertisseurs, un accent particulier est mis sur les convertisseurs bidirectionnels DC/DC. Dans cette thèse, trois topologies différentes sont étudiées en profondeur: deux phases Dual Active Bridge (DAB), trois phases DAB, et l’utilisation de la technologie Modular Multilevel converter (MMC) comme convertisseur DC/DC. Pour chaque topologie, une commande non-linéaire spécifique est discutée. D’autre part une nouvelle fonction pour le convertisseur DC/DC est étudiée. Il s’agit de son utilisation comme disjoncteur à courant continu (DC-CB). En ce qui concerne le contrôle primaire, qui permet de maintenir le niveau de tension continue dans le réseau, nous avons étudié trois philosophies de contrôle: celle de maître/esclave, celui du contrôle « voltage margin control » et celle de la commande du statisme (droop control). Enfin, nous avons choisi d'utiliser le droop control, entre autres, parce que la communication entre les nœuds n’est pas nécessaire. Concernant la commande secondaire, son principal objectif est de planifier le transfert de puissance entre les nœuds du réseau, qui fournissent la tension et la puissance de référence aux contrôleurs locaux et primaires, même lorsque des perturbations apparaissent. Dans cette partie, nous avons proposé une nouvelle approche pour résoudre les problèmes de flux de puissance (équations non-linéaires) basée sur le théorème du point fixe de l’application contractive. Ceci permet d'utiliser plus d'un slack bus, contrairement à l’approche classique basée sur la méthode de Newton-Raphson. Par ailleurs, le réglage secondaire joue un rôle très important dans les applications pratiques, en particulier lorsque les sources d'énergie renouvelables (variables dans le temps). Dans de tels cas, il est intéressant de considérer des dispositifs de stockage afin d'améliorer la stabilité de tout le système. Il est également possible d'envisager différents types de prévisions (météo, charge, ..) basées sur la gestion des réserves de stockage. Toutes ces caractéristiques ont suggéré l'utilisation d'une approche MPC. Dans ce contexte, plusieurs critères d'optimisation ont été considérés, en particulier la minimisation des pertes de transmission ou des congestions dans le réseau.La tâche principale de réglage tertiaire est de d'atteindre l'optimisation économique de l'ensemble du réseau. Dans cette thèse, nous avons pu maximiser le profit économique du système en agissant sur le marché réel, et en optimisant l'utilisation des périphériques de stockage. Dans le but de mettre en œuvre la philosophie de contrôle hiérarchique présentée dans cette thèse, nous avons construit un banc d'essai expérimental. Cette plate-forme dispose de quatre terminaux reliés entre eux par l'intermédiaire d'un réseau à courant continu, et connectés au réseau principal de courant alternatif. Ce réseau DC peut fonctionner à un maximum de 400 V, et avec une courant maximal de 15 A. / This thesis focuses on the hierarchical control for a multi-terminal high voltage direct current (MT-HVDC) grid suitable for the integration of large scale renewable energy sources. The proposed control scheme is composed of 4 layers, from the low local control at the power converters in the time scale of units of ms; through distributed droop control (primary control) applied in several terminals in the scale of unit of seconds; and then to communication based Model Predictive Control (MPC) that assures the load flow and the steady state voltage/power plan for the whole system, manage large scale storage and include weather forecast (secondary control); finally reaching the higher level controller that is mostly based on optimization techniques, where economic aspects are considered in the same time as longer timespan weather forecast (tertiary control).Concerning the converters' level, special emphasis is placed on DC/DC bidirectional converters. In this thesis, three different topologies are studied in depth: two phases dual active bridge (DAB), the three phases DAB, and the use of the Modular Multilevel Converter (MMC) technology as DC/DC converter. For each topology a specific non-linear control is presented and discussed. In addition, the DC/DC converter can provide other important services as its use as a direct current circuit breaker (DC-CB). Several operation strategies are studied for these topologies used as DC-CB.With respect to primary control, which is the responsible to maintain the DC voltage control of the grid, we have studied several control philosophies: master/slave, voltage margin control and droop control. Finally we have chosen to use droop control, among other reasons, because the communication between nodes is not required. Relative to the secondary control, its main goal is to schedule power transfer between the network nodes providing voltage and power references to local and primary controllers, providing steady state response to disturbances and managing power reserves. In this part we have proposed a new approach to solve the power flow problem (non-linear equations) based on the contraction mapping theorem, which gives the possibility to use more than one bus for the power balance (slack bus) instead of the classic approach based on the Newton-Raphson method. Secondary control plays a very important role in practical applications, in particular when including time varying power sources, as renewable ones. In such cases, it is interesting to consider storage devices in order to improve the stability and the efficiency of the whole system. Due to the sample time of secondary control is on the order of minutes, it is also possible to consider different kinds of forecast (weather, load,..) and to achieve additional control objectives, based on managing storage reserves. All these characteristics encourage the use of a model predictive control (MPC) approach to design this task. In this context, several possibilities of optimization objective were considered, like to minimize transmission losses or to avoid power network congestions.The main task of tertiary control is to manage the load flow of the whole HVDC grid in order to achieve economical optimization. This control level provides power references to the secondary controller. In this thesis we were able to maximize the economic profit of the system by acting on the spot market, and by optimizing the use of storage devices. In this level it is again used the MPC approach.With the aim of implementing the hierarchical control philosophy explained in this thesis, we have built an experimental test bench. This platform has 4 terminals interconnected via a DC grid, and connected to the main AC grid through VSC power converters. This DC grid can work at a maximum of 400 V, and with a maximum allowed current of 15 A.
|
2 |
Evaluation of DC supply protection for efficient energy delivery in low voltage applications / Évaluation de l'alimentation en courant continu pour une distribution d'énergie efficace dans les appareils domestiquesMa, Thi Thuong Huyen 05 April 2018 (has links)
Actuellement, il y a une baisse du prix des ressources énergétiques distribuées, en particulier l'énergie solaire photovoltaïque, conduisant à la croissance significative de leur capacité d'installation dans de nombreux pays. D'autre part, les politiques encourageant l'efficacité énergétique ont favorisé le développement de charges DC dans les zones domestiques, telles que l'éclairage LED, les ordinateurs,, les téléphones, les téléviseurs, les moteurs DC efficaces et les véhicules électriques. Grace à ce changement, le système de distribution de microgrid DC devient plus attractive que le système de distribution à courant alternatif traditionnel. Les avantages principaux du microgrid DC sont l'efficacité énergétique plus élevée, plus facile à intégrer avec les sources d'énergie distribuées et le système de stockage. Alors que de nombreuses recherches se concentrent sur les stratégies de contrôle et la gestion de l'énergie dans le microgrid DC, sa protection reçoit une attention insuffisante et un manque de réglementation et d'expériences. La protection dans les réseaux DC est plus difficile que dans le réseau AC en raison de l'arc continu, de la valeur plus élevée du courant de courtcircuit et du taux de défaut de montée. En outre, dans les réseaux distribués à courant continu sont composés de nombreux dispositifs de commutation électroniques et semi-conducteurs, qui ne supportent le courant de défaut que quelques dizaines de microsecondes. Les disjoncteurs mécaniques, qui ont un temps de réponse de quelques dizaines de millisecondes, ne semblent pas satisfaire aux exigences de sécurité du microréseau à courant continu. L'absence d'un dispositif de protection efficace constitue un obstacle au développement du microgrid DC dans le système distribué. Cette thèse propose un disjoncteur DC auto-alimenté à courant continu utilisant normalement JFET SiC, qui offre un excellent dispositif de protection pour les microgrids DC grâce à son temps de réponse rapide et ses faibles pertes à l'état passant. La conception du disjoncteur DC à semi-conducteurs vise à répondre à deux objectifs: temps de réponse rapide et fiabilité. Les spécifications conçues et les énergies critiques qui entraînent la destruction du disjoncteur sont identifiées sur la base des résultats mesurés d'un JFET populaire dans le commerce. Un pilote de protection très rapide et fiable basé sur une topologie à convertisseur flyback avant est utilisé pour générer une tension négative suffisante pour tourner et maintenir le JFET SiC. Le convertisseur sera activé chaque fois que le disjoncteur détecte des défauts de court-circuit en détectant la tension de drain-source de JFET et crée une tension négative s'applique à la porte de JFET. Pour éviter une défaillance de la porte par surtension au niveau de la grille du JFET, la tension de sortie du convertisseur de retour vers l'avant est régulée à l'aide de la mesure coté primaire. Les résultats expérimentaux sur le prototype du disjoncteur DC ont validé les principes de fonctionnement proposés et ont confirmé que le disjoncteur DC à semi-conducteurs proposé peut interrompre le défaut en 3 μs. D'un autre côté, un modèle du JFET normalement activé dans l'environnement Matlab/Simulink est construit pour étudier les comportements du SSCB pendant une durée de court-circuit. L'accord entre la simulation et les résultats expérimentaux confirment que ce modèle JFET peut être utilisé pour simuler le fonctionnement d'un disjoncteur DC et dans l'étude du fonctionnement du microgrid DC pendant le processus de défaut et de compensation / Currently, there is a drop in the price of distributed energy resources, especially solar PVs, which leads to a significant growth of the installed capacities in many countries. On the other hand, policies encouraging energy efficiency have promoted the development of DC loads in domestic areas, such as LEDs lighting, computers, telephones, televisions, efficient DC motors and electric vehicles. Corresponding to these changes in sources and loads, DC microgrid distribution system becomes more attractive than the traditional AC distribution system. The main advantages of the DC microgrid are higher energy efficiency, easier in integrating with distributed energy sources and storage systems. While many studies concentrate on the control strategies and energy management in the DC microgrid, the protection still receives inadequate attention and lack of regulations and experiences. Protection in DC grids is more complex than AC grids due to the continuous arc, higher short circuit current value and fault rate of rising. Furthermore, the DC distributed grids are composed of many electronic and semiconductor switching devices, which only sustain the fault currents of some tens of microseconds. Mechanical circuit breakers, which have a response time in tens of milliseconds, seem not to meet the safety requirement of DC microgrids. The lack of effective protection devices is a barrier to the development of DC microgrids in the distributed systems. This thesis proposes a self-power solid state DC circuit breaker using normally-on SiC JFET, which offers a great protection device for DC microgrids due to its fast response time and low on-state losses. The design of the solid state DC circuit breaker aims to meet two objectives: fast response time and high reliability. The designed specifications and critical energies that result in the destruction of the circuit breaker are identified on the basis of the experiments of a commercial normally-on JFET. In addition, a very fast and reliable protection driver based on a forward-flyback converter topology is employed to generate a sufficient negative voltage to turn and hold off the SiC JFET. The converter will be activated whenever short-circuit faults are detected by sensing the drain-source voltage, then creating a negative voltage applied to the gate of JFET. To avoid gate failure by overvoltage at the gate of JFET, the output voltage of the forward-flyback converter is regulated using Primary Side Sensing technique. Experimental results validated the working principle of the proposed solid state DC circuit breaker with fault clearing time less than 3 μs. Additionally, a model of the normally-on JFET in Matlab/Simulink environment is built for exploring the behaviors of the solid-state DC circuit breaker during short-circuit faults. The agreement between the simulation and experimental results confirms that this JFET model can be appropriately used for the investigation of solid state DC circuit breaker operations and DC microgrids in general during fault evens and clearing fault processes
|
Page generated in 0.0228 seconds