• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 12
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VOLTAGE CONTROL AND POWER SHARING IN DC MICROGRIDS (DCMG)

Almajeez, Rawaa 26 August 2022 (has links)
No description available.
2

A Study on Multiple Resources Integration in a DC Microgrid

Lin, Chien-Hung 15 August 2011 (has links)
Distributed generation (DG) and microgrid will play an essential role in the modern power system. They could improve energy efficiency, reduce losses, minimize environmental impacts and enhance power system reliability and stability. Most of the renewable energy applications would require two or three power conversions before power reaches the loads. If the power from DG could be utilized in DC form, the loss could be minimized and system efficiency is improved. Fuel cell, energy storage battery, photovoltaic and power electronic building block (PEBB) are used in this research to set up a DC microgrid. Simulation and hardware implementation are conducted. Techniques studied in this thesis include different power sources interconnection and DC bus voltage and microgrid power controls. Based on the studied results, DC mircogrid integration and system operation schemes are recommended.
3

Hybrid Energy Storage Implementation in DC and AC Power System for Efficiency, Power Quality and Reliability Improvements

Farhadi, Mustafa 07 March 2016 (has links)
Battery storage devices have been widely utilized for different applications. However, for high power applications, battery storage systems come with several challenges, such as the thermal issue, low power density, low life span and high cost. Compared with batteries, supercapacitors have a lower energy density but their power density is very high, and they offer higher cyclic life and efficiency even during fast charge and discharge processes. In this dissertation, new techniques for the control and energy management of the hybrid battery-supercapacitor storage system are developed to improve the performance of the system in terms of efficiency, power quality and reliability. To evaluate the findings of this dissertation, a laboratory-scale DC microgrid system is designed and implemented. The developed microgrid utilizes a hybrid lead-acid battery and supercapacitor energy storage system and is loaded under various grid conditions. The developed microgrid has also real-time monitoring, control and energy management capabilities. A new control scheme and real-time energy management algorithm for an actively controlled hybrid DC microgrid is developed to reduce the adverse impacts of pulsed power loads. The developed control scheme is an adaptive current-voltage controller that is based on the moving average measurement technique and an adaptive proportional compensator. Unlike conventional energy control methods, the developed controller has the advantages of controlling both current and voltage of the system. This development is experimentally tested and verified. The results show significant improvements achieved in terms of enhancing the system efficiency, reducing the AC grid voltage drop and mitigating frequency fluctuation. Moreover, a novel event-based protection scheme for a multi-terminal DC power system has been developed and evaluated. In this technique, fault identification and classifications are performed based on the current derivative method and employing an artificial inductive line impedance. The developed scheme does not require high speed communication and synchronization and it transfers much less data when compared with the traditional method such as the differential protection approach. Moreover, this scheme utilizes less measurement equipment since only the DC bus data is required.
4

Distributed Predictive Control for MVDC Shipboard Power System Management

Zohrabi, Nasibeh 14 December 2018 (has links)
Shipboard Power System (SPS) is known as an independent controlled small electric network powered by the distributed onboard generation system. Since many electric components are tightly coupled in a small space and the system is not supported with a relatively stronger grid, SPS is more susceptible to unexpected disturbances and physical damages compared to conventional terrestrial power systems. Among different distribution configurations, power-electronic based DC distribution is considered the trending technology for the next-generation U.S. Navy fleet design to replace the conventional AC-based distribution. This research presents appropriate control management frameworks to improve the Medium-Voltage DC (MVDC) shipboard power system performance. Model Predictive Control (MPC) is an advanced model-based approach which uses the system model to predict the future output states and generates an optimal control sequence over the prediction horizon. In this research, at first, a centralized MPC is developed for a nonlinear MVDC SPS when a high-power pulsed load exists in the system. The closed-loop stability analysis is considered in the MPC optimization problem. A comparison is presented for different cases of load prediction for MPC, namely, no prediction, perfect prediction, and Autoregressive Integrated Moving Average (ARIMA) prediction. Another centralized MPC controller is also designed to address the reconfiguration problem of the MVDC system in abnormal conditions. The reconfiguration goal is to maximize the power delivered to the loads with respect to power balance, generation limits and load priorities. Moreover, a distributed control structure is proposed for a nonlinear MVDC SPS to develop a scalable power management architecture. In this framework, each subsystem is controlled by a local MPC using its state variables, parameters and interaction variables from other subsystems communicated through a coordinator. The Goal Coordination principle is used to manage interactions between subsystems. The developed distributed control structure brings out several significant advantages including less computational overhead, higher flexibility and a good error tolerance behavior as well as a good overall system performance. To demonstrate the efficiency of the proposed approach, a performance analysis is accomplished by comparing centralized and distributed control of global and partitioned MVDC models for two cases of continuous and discretized control inputs.
5

HIERARCHICAL DECENTRALIZED CONTROL TECHNIQUES OF A MODEL DC MICROGRID

Carbone, Marc A. 13 September 2016 (has links)
No description available.
6

Evaluation of DC supply protection for efficient energy delivery in low voltage applications / Évaluation de l'alimentation en courant continu pour une distribution d'énergie efficace dans les appareils domestiques

Ma, Thi Thuong Huyen 05 April 2018 (has links)
Actuellement, il y a une baisse du prix des ressources énergétiques distribuées, en particulier l'énergie solaire photovoltaïque, conduisant à la croissance significative de leur capacité d'installation dans de nombreux pays. D'autre part, les politiques encourageant l'efficacité énergétique ont favorisé le développement de charges DC dans les zones domestiques, telles que l'éclairage LED, les ordinateurs,, les téléphones, les téléviseurs, les moteurs DC efficaces et les véhicules électriques. Grace à ce changement, le système de distribution de microgrid DC devient plus attractive que le système de distribution à courant alternatif traditionnel. Les avantages principaux du microgrid DC sont l'efficacité énergétique plus élevée, plus facile à intégrer avec les sources d'énergie distribuées et le système de stockage. Alors que de nombreuses recherches se concentrent sur les stratégies de contrôle et la gestion de l'énergie dans le microgrid DC, sa protection reçoit une attention insuffisante et un manque de réglementation et d'expériences. La protection dans les réseaux DC est plus difficile que dans le réseau AC en raison de l'arc continu, de la valeur plus élevée du courant de courtcircuit et du taux de défaut de montée. En outre, dans les réseaux distribués à courant continu sont composés de nombreux dispositifs de commutation électroniques et semi-conducteurs, qui ne supportent le courant de défaut que quelques dizaines de microsecondes. Les disjoncteurs mécaniques, qui ont un temps de réponse de quelques dizaines de millisecondes, ne semblent pas satisfaire aux exigences de sécurité du microréseau à courant continu. L'absence d'un dispositif de protection efficace constitue un obstacle au développement du microgrid DC dans le système distribué. Cette thèse propose un disjoncteur DC auto-alimenté à courant continu utilisant normalement JFET SiC, qui offre un excellent dispositif de protection pour les microgrids DC grâce à son temps de réponse rapide et ses faibles pertes à l'état passant. La conception du disjoncteur DC à semi-conducteurs vise à répondre à deux objectifs: temps de réponse rapide et fiabilité. Les spécifications conçues et les énergies critiques qui entraînent la destruction du disjoncteur sont identifiées sur la base des résultats mesurés d'un JFET populaire dans le commerce. Un pilote de protection très rapide et fiable basé sur une topologie à convertisseur flyback avant est utilisé pour générer une tension négative suffisante pour tourner et maintenir le JFET SiC. Le convertisseur sera activé chaque fois que le disjoncteur détecte des défauts de court-circuit en détectant la tension de drain-source de JFET et crée une tension négative s'applique à la porte de JFET. Pour éviter une défaillance de la porte par surtension au niveau de la grille du JFET, la tension de sortie du convertisseur de retour vers l'avant est régulée à l'aide de la mesure coté primaire. Les résultats expérimentaux sur le prototype du disjoncteur DC ont validé les principes de fonctionnement proposés et ont confirmé que le disjoncteur DC à semi-conducteurs proposé peut interrompre le défaut en 3 μs. D'un autre côté, un modèle du JFET normalement activé dans l'environnement Matlab/Simulink est construit pour étudier les comportements du SSCB pendant une durée de court-circuit. L'accord entre la simulation et les résultats expérimentaux confirment que ce modèle JFET peut être utilisé pour simuler le fonctionnement d'un disjoncteur DC et dans l'étude du fonctionnement du microgrid DC pendant le processus de défaut et de compensation / Currently, there is a drop in the price of distributed energy resources, especially solar PVs, which leads to a significant growth of the installed capacities in many countries. On the other hand, policies encouraging energy efficiency have promoted the development of DC loads in domestic areas, such as LEDs lighting, computers, telephones, televisions, efficient DC motors and electric vehicles. Corresponding to these changes in sources and loads, DC microgrid distribution system becomes more attractive than the traditional AC distribution system. The main advantages of the DC microgrid are higher energy efficiency, easier in integrating with distributed energy sources and storage systems. While many studies concentrate on the control strategies and energy management in the DC microgrid, the protection still receives inadequate attention and lack of regulations and experiences. Protection in DC grids is more complex than AC grids due to the continuous arc, higher short circuit current value and fault rate of rising. Furthermore, the DC distributed grids are composed of many electronic and semiconductor switching devices, which only sustain the fault currents of some tens of microseconds. Mechanical circuit breakers, which have a response time in tens of milliseconds, seem not to meet the safety requirement of DC microgrids. The lack of effective protection devices is a barrier to the development of DC microgrids in the distributed systems. This thesis proposes a self-power solid state DC circuit breaker using normally-on SiC JFET, which offers a great protection device for DC microgrids due to its fast response time and low on-state losses. The design of the solid state DC circuit breaker aims to meet two objectives: fast response time and high reliability. The designed specifications and critical energies that result in the destruction of the circuit breaker are identified on the basis of the experiments of a commercial normally-on JFET. In addition, a very fast and reliable protection driver based on a forward-flyback converter topology is employed to generate a sufficient negative voltage to turn and hold off the SiC JFET. The converter will be activated whenever short-circuit faults are detected by sensing the drain-source voltage, then creating a negative voltage applied to the gate of JFET. To avoid gate failure by overvoltage at the gate of JFET, the output voltage of the forward-flyback converter is regulated using Primary Side Sensing technique. Experimental results validated the working principle of the proposed solid state DC circuit breaker with fault clearing time less than 3 μs. Additionally, a model of the normally-on JFET in Matlab/Simulink environment is built for exploring the behaviors of the solid-state DC circuit breaker during short-circuit faults. The agreement between the simulation and experimental results confirms that this JFET model can be appropriately used for the investigation of solid state DC circuit breaker operations and DC microgrids in general during fault evens and clearing fault processes
7

T-Type Modular Dc Circuit Breaker (T-Breaker) with Integrated Energy Storage for Future Dc Networks

Zhang, Yue 24 August 2022 (has links)
No description available.
8

T-Type Modular DC Circuit Breaker (T-Breaker) for the Stabilization of Future High Voltage DC Networks

Alsaif, Faisal January 2022 (has links)
No description available.
9

Predictive control of standalone DC microgrid with energy storage under load and environmental uncertainty

Batiyah, Salem Mohammed 01 May 2020 (has links)
Distributed generators (DGs) with integration of renewable resources (RRs) such as photovoltaic (PV) and wind turbine have been widely considered to reduce the dependency on conventional power generation systems along with enhancement of the quality and sustainability of the power system. Recently, DC microgrid has gained popularity in many real-world applications such as rural electrification due to its simplicity and low power losses. However, the power variability of renewable resources and continuous change in load demand imposes risks of power mismatch in standalone DC systems that increase the chances of stability and reliability issues. Therefore, complementary generation and/or storage systems are coupled with standalone DC microgrid to mitigate the power fluctuations and maintain a power balance in the system. This dissertation presents a power management strategy (PMS) based on model predictive control (MPC) for a standalone DC microgrid. A control scheme for a standalone DC microgrid system with RRs, storage, and load is desired to have the capability of effective power management that maximizes the extraction of energy from renewable generators, minimizes the transients in the system during disturbances, and protects the storage from over/under charging conditions. As a part of the proposed MPC, an optimization problem is formulated to meet the voltage performance in the system with respect to operating conditions and constraints. The proposed PMS uses the ARIMA prediction method to forecast the load and environmental parameters. The predicted parameters are utilized to estimate the future performance of the system by solving the dynamic model of the system, and a cost function is optimized to generate suitable control sequences. This research also presents detailed mathematical models of the considered systems. This dissertation presents an extensive simulation-based analysis of the proposed approach. With the proposed control, maximum utilization of the renewable generators has been achieved, and the DC bus voltage is regulated at nominal value with minimum transients under various load/environmental disturbances. Moreover, the research investigates the proposed MPC based on ARIMA prediction by comparing the performance of different types of prediction methods. The dissertation also measures the effectiveness of the proposed MPC by comparing its performance with a conventional PI controller.
10

Planning and Operation of Hybrid AC-DC Microgird with High Penetration of Renewable Energy Sources

Baseer, Muhammad January 2022 (has links)
A hybrid ac/dc microgrid is a more complex but practical network that combines the advantages of an AC and a DC system. The main advantage of this network is that it connects both alternating current and direct current networks via an interlinking converter (IC) to form a unified distribution grid. The hybrid microgrid (HMG) will enable the direct integration of both alternating current (AC) and direct current (DC) distributed generators (DGs), energy storage systems (ESS), and alternating current and direct current (DC) loads into the grid. The alternating current and direct current sources, loads, and ESS are separated and connected to their respective subgrids primarily to reduce power conversion and thus increase overall system efficiency. As a result, the HMG architecture improves power quality and system reliability. Planning a hybrid microgrid entails estimating the capacities of DGs while taking technical, economic, and environmental factors into account. The hybrid ac-dc microgrid is regarded as the distribution network of the future, as it will benefit from both ac and dc microgrids. This thesis presents a general architecture of a hybrid ac-dc microgrid, which includes both planning and design. The goal of the Hybrid ac-dc microgrid planning problem is to maximise social welfare while minimising total planning costs such as investment, maintenance, and operation costs. This configuration will assist Hybrid microgrid planners in estimating planning costs while allowing them to consider any type of load ac/dc and DER type. Finally, this thesis identifies the research questions and proposes a future research plan.

Page generated in 0.0548 seconds