• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mikrostruktura a mechanické vlastnosti ultrajemnozrnných slitin titanu / Microstructure and mechanical properties of ultra-fine grained titanium alloys

Václavová, Kristína January 2015 (has links)
Title: Microstructure and mechanical properties of ultra-fine grained titanium alloys Author: Bc. Kristína Václavová Department / Institute: Department of Physics of Materials Supervisor of the master thesis: PhDr. RNDr. Josef Stráský, Ph.D. Abstract: Metastable β-Ti alloys Ti-15Mo and Ti-6.8Mo-4.5Fe-1.5Al (TIMETAL LCB) were subjected to severe plastic deformation by high pressure torsion. Microhardness of Ti-15Mo and TIMETAL LCB alloys increases with increasing inserted deformation, i.e. with increasing number of HPT rotations and also with increasing distance from the centre of the sample. The highest microhardness after HPT exceeds significantly the microhardness of two- phase α + β heat-treated material. Increasingly deformed microstructure was also demonstrated by scanning electron microscopy and by electron back-scatter diffraction. Significant twinning was observed in both studied alloys. Mechanism of multiple twinning contributes notably to the fragmentation of grains and thus to the refinement of the microstructure. Defect structure in Ti-15Mo alloy was studied by positron annihilation spectroscopy. It was proved that dislocations are the only detectable defects in the material by positron annihilation spectroscopy and that dislocation density increases with the number of HPT revolution and with...
2

Microstructure Characterization of SUS444 Ferritic Stainless Steel

Yamoah, Nana Kwame Gyan 20 June 2013 (has links)
Redesigning heavy components with thinner components is one way to lower automotive weight and improve fuel efficiency. Therefore, replacing thick cast iron exhaust manifolds with thinner heat resistant stainless steel one is a prime example of this approach. Material for a thin exhaust manifold must tolerate cyclic thermal fatigue. In SUS 444, this characteristic is directly related to the influence of microstructure on high temperature strength and the stability of the microstructure at the high operating temperature range. The goal of this research is to identify the cause for the drastic difference in the stress-strain behavior between two potential manufacturer heat treatments that will serve as a simplified model case for high temperature cyclic fatigue.  Transmission electron microscopy (TEM) based microstructure analyses of samples which have been aged at 750"C for 100 hours and then hot-tensile tested at 750"C with a strain rate of   suggest continuous recrystallization as the mechanism responsible for the stable high temperature strength. The initial high temperature strength observed in the unaged sample was due to the precipitation of fine Laves phases which pinned down the motion of dislocations. As deformation progressed the strength increased until a critical precipitate size, volume fraction and dislocation density before Laves phases begun to rapidly coarsen and resulted in the abrupt decrease in strength. Microstructure evidence suggests the absence of precipitation strengthening effect in the aged samples could be a contributing factor to the decrease in peak strength between the aged samples and the unaged samples. / Master of Science
3

Meso-Scale Modeling of Polycrystal Deformation

Lim, Hojun 03 November 2010 (has links)
No description available.
4

Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

Penlington, Alexander 02 October 2013 (has links)
Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis FusionTM alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 m wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-10-02 10:19:10.279
5

Microstructure prediction of severe plastic deformation manufacturing processes for metals

Shen, Ninggang 01 May 2018 (has links)
The objective of the research presented in this thesis has been to develop a physics-based dislocation density-based numerical framework to simulate microstructure evolution in severe plastic deformation (SPD) manufacturing processes for different materials. Different mechanisms of microstructure evolution in SPD manufacturing processes were investigated and summarized for different materials under dynamic or high strain rates over a wide temperature range. Thorough literature reviews were performed to clarify discrepancies of the mechanism responsible for the formation of nanocrystalline structure in the machined surface layer under both low-temperature and high-temperature conditions. Under this framework, metallo-thermo-mechanically (MTM) coupled finite element (FE) models were developed to predict the microstructure evolution during different SPD manufacturing processes. Different material flow stress responses were modeled subject to responsible plastic deformation mechanisms. These MTM coupled FE models successfully captured the microstructure evolution process for various materials subjected to multiple mechanisms. Cellular automaton models were developed for SPD manufacturing processes under intermediate to high strain rates for the first time to simulate the microstructure evolution subjected to discontinuous dynamic recrystallization and thermally driven grain growth. The cellular automaton simulations revealed that the recrystallization process usually cannot be completed by the end of the plastic deformation under intermediate to high strain rates. The completion of the recrystallization process during the cooling stage after the plastic deformation process was modeled for the first time for SPD manufacturing processes at elevated temperatures.
6

Effect of dislocation density on residual stress in polycrystalline silicon wafers

Garcia, Victoria 06 March 2008 (has links)
The goal of this research was to examine the relationship between dislocation density and in-plane residual stress in edge-defined film-fed growth (EFG) silicon wafers. Previous research has shown models for linking dislocation density and residual stress based on temperature gradient parameters during crystal growth. Residual stress and dislocation density have a positive relationship for wafers with very low dislocation density such as Cz wafers. There has been limited success in experimental verifications of residual stress for EFG wafers, without any reference to dislocation density. No model of stress relaxation has been verified experimentally in post production wafers. A model that assumes stress relaxation and links residual stress and dislocation density without growth parameters will be introduced here. Dislocation density and predominant grain orientation of EFG wafers have been measured by the means of chemical etching/optical microscope and x-ray diffraction, respectively. The results have been compared to the residual stress obtained by a near infrared transmission polariscope. A model was established to explain the results linking dislocation density and residual stress in a randomly selected EFG wafer.
7

Nanostructured advanced ceramics for armour applications

Huang, Shuo January 2013 (has links)
Ceramics have been widely used for personnel and vehicle armour because of their desirable properties such as high hardness and low density. However the brittle nature associated with the ceramic materials, i.e. low toughness, reduces their ability to withstand multiple ballistic hits. The present work is focused on ceramic armour materials made from alumina and zirconia toughened alumina (ZTA). The effects of grain size and zirconia phase transformation toughening on the mechanical and high strain rate properties in both materials were investigated in detail. Alumina, 10%, 15% and 20% nano ZTA with 1.5 mol% yttria stabiliser were produced with various grain sizes. The processing of the materials started from suspension preparation, spray freeze drying of the suspension and die pressing to produce homogeneous green bodies with densities above 54%. Then, the green bodies were sintered using conventional single stage and/or two stage sintering to produce the samples with full density and a range of grain sizes (0.5 to 1.5 µm alumina grains and 60 to 300 nm zirconia grains). The effects of the processing conditions on the microstructures were studied and the optimum processing route for each sample was determined. The mechanical properties of the alumina and ZTA samples were investigated, including Vickers hardness, indentation toughness, 4-point bend strength and wear resistance. The results showed that, with an increasing amount of zirconia addition, evident increases of the toughness, strength and wear resistance properties were observed, whilst the hardness reduced slightly correspondingly. The effect of density and grain sizes on the hardness and toughness were studied as well: larger alumina grain size led to a higher hardness and negligible change in toughness, whilst the zirconia grain coarsening enhanced the phase transformation toughening effect and the samples displayed a higher toughness. In addition to the investigation of the mechanical properties, the alumina and nano ZTA samples were subjected to high strain rate testing, including split Hopkinson pressure bar (SHPB) (8-16 m/s) and gas gun impact testing (100-150 m/s). The high strain rate performances were compared in terms of their fracture behaviours, fragmentation process and fragment size distribution. Raman spectroscopy was used to measure the amount of zirconia phase transformation in ZTA samples after the high strain rate testing. The residual stress and dislocation density in alumina grains after testing were quantitatively measured using Cr3+ fluorescence spectroscopy. The results indicated that zirconia phase transformation can reduce the residual stress and dislocation densities in the ZTA samples, resulting in less damage, lower plastic deformation and less crack propagation. In addition, a nano zirconia material with 1.5 mol% yttria stabiliser (1.5YSZ) was subjected to a gas gun impact test with a very high impact speed (142 m/s); a deep projectile penetration was observed, due to the low hardness of the pure zirconia, whilst the sample stayed intact. The result further confirmed that the zirconia phase transformation toughening effect can improve the sample's high strain rate performance.
8

Crystal plasticity modeling of deformation in FCC metals and predictions for recrystallization nucleation

Chakraborty, Supriyo January 2021 (has links)
No description available.
9

Deformation studies near hard particles in a superalloy

Karamched, Phani Shashanka January 2011 (has links)
Superalloys have performed well as blade and disc materials in turbine engines due to their exceptional elevated temperature strength, high resistance to creep, oxidation and corrosion as well as good fracture toughness. This study explores the use of a relatively new technique of strain measurement, high resolution electron backscatter diffraction (HR-EBSD) to measure local deformation fields. The heart of the HR-EBSD technique lies in comparing regions in EBSD patterns from a strained region of a sample to those in a pattern from an unstrained region. This method was applied to study the elastic strain fields and geometrically necessary dislocation density (GND density) distribution near hard carbide particles in a nickel-based superalloy MAR-M-002. Significant thermal strains were initially induced by thermal treatment, which included a final cooling from the ageing temperature of 870°C. Elastic strains were consistent with a compressive radial strain and tensile hoop strain that was expected as the matrix contracts around the carbide. The mismatch in thermal expansion coefficient of the carbide particles compared to that of the matrix was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10<sup>13</sup> m<sup>–2</sup> in regions around the carbide. These measured elastic strain and GND densities have been used to help develop a crystal plasticity finite element model in another research group and some comparisons under thermal loading have also been examined. Three-point bending was then used to impose strain levels within the range ±12% across the height of a bend bar sample. GND measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbide particles. The higher GND densities near the carbides (order of 10<sup>14</sup> per m<sup>2</sup>) are generated by the large strain gradients produced around the plastically rigid inclusion during monotonic mechanical deformation with some minor contribution from the pre-existing residual deformation from thermal loading. A method was developed of combining the local EBSD measurements with FE modelling to set the average residual strains within the mapped region even when a good strain free reference point was unavailable. Cyclic loading was then performed under four point loading to impose strain levels of about ±8% across the height of bend bar samples. Similar measurements as in the case of monotonic deformation were made at several interruptions to fatigue loading. Observations from the cyclic loading such as slip features, carbide cracking, GND density accumulation have been explored around carbide particles, at regions away from them and near a grain boundary.
10

Analyse des mécanismes de recristallisation statique du tantale déformé à froid pour une modélisation en champ moyen / Analysis of static recrystallization mechanisms of cold-worked tantalum for mean-field modeling

Kerisit, Christophe 18 December 2012 (has links)
L'objectif de ce travail est de prédire les évolutions microstructurales se produisant dans le tantale pur lors d'un traitement thermique en fonction de son état microstructural initial. La restauration, la recristallisation et la croissance de grains sont décrites à l'aide d'un modèle en champ moyen qui nécessite une description adéquate de la microstructure, en termes de distributions de tailles de grains et de densités de dislocations équivalentes. La densité de dislocation équivalente moyenne peut être évaluée par une simple mesure de dureté Vickers. L'établissement de la relation dureté-densité de dislocations nécessite l'utilisation d'une loi de comportement basée sur la densité de dislocations équivalente. Les évolutions microstructurales au cours d'un traitement thermique ont été observées et les paramètres pilotant ces phénomènes ont été identifiés à l'aide d'essais originaux comme l'observation in situ de la recristallisation ou l'utilisation d'essais à gradient de déformation pour déterminer le seuil de densité de dislocations équivalente pour déclencher la recristallisation. Des essais plus classiques ont permis d'obtenir des cinétiques de recristallisation dans la gamme 1000°C-1100°C pour différentes microstructures initiales. Les simulations des différents traitements thermiques à l'aide du modèle à champ moyen rendent bien compte des évolutions microstructurales en termes de fraction recristallisée et de taille des grains recristallisés pour des microstructures faiblement déformées ou fortement déformées et fragmentées, en utilisant une description adéquate du type de microstructure initiale. Le modèle devra en revanche être adapté pour traiter le cas de microstructures intermédiaires, en enrichissant non seulement la description de la microstructure initiale mais également celle de l'étape de germination des grains recristallisés. Il deviendra alors capable de prédire les évolutions de microstructures pour tout type de microstructure initiale de tantale. / This study aims at predicting the microstructural evolution of pure tantalum during annealing according the initial microstructural state. Static recovery and discontinuous recrystallization as well as grain growth are described using a mean-field model requiring an appropriate description of the microstructure, using both equivalent dislocation densities and grain sizes distributions. The average equivalent dislocation density can be assessed from Vickers microhardness measurements. The calibration of such a relation between microhardness and dislocation density involves the use of a dislocation density-based constitutive law. Microstructural evolutions during annealing have been observed and control parameters of these phenomena have been determined using original tests such as in situ observation of the recrystallization process or the use of strain gradient samples to assess the critical dislocation density for the onset of recrystallization. More classical tests have been carried out to get recrystallization kinetics in the range 1000-1100°C for different initial microstructures. Simulations of annealing using the mean-field model adapted for tantalum match the experimental evolution of both recrystallized fraction and recrystallized grain size, in either weakly deformed or severely deformed and fragmented microstructures. On the other hand, the model needs to be further adapted for intermediate microstructures, with both a more elaborate description of the initial microstructure and of the nucleation stage of the recrystallized grains. It will then be suitable to predict evolutions of any initial tantalum microstructure during annealing.

Page generated in 0.1103 seconds