Spelling suggestions: "subject:"dislocation loop"" "subject:"mislocation loop""
1 |
An Analysis of Dislocation Loops in Tetragonal BaTiO3 CeramicsChen, Ching-Ying 11 August 2003 (has links)
Dislocation loops in pressureless-sintered undoped BaTiO3 ceramics have been analysed via transmission electron microscopy (TEM). The Burgers vector b = [100] of the loops was initially determined by the contrast analysis of the g•b = 0 criteria combining with the inside-outside contrast method by which the sense of the Burgers vector was concluded. The vacancy nature were determined by adopting the inside-outside contrast analysis using the criteria of (g•b)sg being positive or negative when the loops were imaged under kinematical diffraction conditions of sg ¡Ú 0. High-resolution imaging of such loops has enabled us to confirm its vacancy nature, consistent with the contrast analysis. Further, the loops¡¦ Burgers vector was determined to be b = 1/2[100] and the loops were therefore negative partial dislocation loops lying in {200} where part of the TiO2-deficiency existed locally in the grains of sintered BaTiO3 ceramics was accommodated by the presence of vacancy loops. It is suggested that the extrinsic defects of both titanium and oxygen vacancies ( and ,) generated by the non-stoichiometry which gave clustered during sintering in air are responsible for the formation of the dislocation loops.
|
2 |
Fragilisation des aciers de cuve irradiés : analyse numérique des mécanismes de plasticité à l’aide de simulations de dynamique des dislocations / Dose-dependent embrittlement in nuclear reactor pressure vessel steel : dislocation-mediated plasticity mechanisms analyzed by means of 3D dislocation dynamics simulationsLi, Yang 27 September 2019 (has links)
Ce travail est une contribution à l’étude de la dégradation des propriétés mécaniques des matériaux métalliques irradiés, dans le contexte de la production d’énergie nucléaire. Cette thèse porte en particulier sur l’étude du comportement des dislocations dans les matériaux ferritiques irradiés, à l’aide de simulations de dynamique des dislocations (DD).L’évolution de la microstructure des défauts d’irradiation est tout d’abord analysée à l'aide d’un code nodal (code NUMODIS). Le Chapitre 2 traite en particulier de la diffusion et l’interaction de boucles prismatiques, en utilisant la dynamique des dislocations dite «stochastique». Ces calculs reproduisent les forces d’interaction élastiques boucle/boucle et les forces stochastiques associées aux fluctuations thermiques ambiantes. Il est ainsi montré que la réorientation des boucles (tilt) a un fort effet sur leur dynamique, en ce qui concerne notamment le taux d’évolution du confinement élastique boucle/boucle.L'effet du glissement dévié sur l’interaction entre dislocation/boucle est ensuite examiné au Chapitre 3. Cette étude fait appel à une configuration initiale spécifique, associée à un changement du plan de glissement d'une source de dislocation vis. De cette manière, il est montré que le glissement dévié réduit considérablement la résistance des défauts/obstacles. Cet effet confirme le rôle critique du glissement dévié durant la déformation plastique post-irradiation.La déformation plastique post-irradiation est étudiée à l’échelle du grain, au Chapitre 4, à l’aide de simulations DD à base de segments (code TRIDIS). Ces simulations traitent les mécanismes de glissement dévié et de glissement thermiquement activé (vis). Chaque condition d’irradiation simulée peut être caractérisée par un «décalage de la température apparente induite par des défauts d’irradiation» (ΔDIAT). Cette quantité est proportionnelle aux évolutions statistiques de la mobilité effective des dislocations. Le ΔDIAT calculé est pratiquement équivalent au décalage de la température de transition fragile à ductile (ΔDBTT) obtenu expérimentalement, pour une taille et densité de défauts d’irradiation donnée. Cette corrélation ΔDIAT/ΔDBTT peut être interprétée à partir de mécanismes de déformation plastique élémentaires, faisant appel à la théorie des dislocations. / The interplay between radiation-generated defects and dislocation networks leads to a variety of changes in mechanical properties and results in a detrimental effect on the structural reactor component lifetime. The present PhD work focuses on studying elementary and collective dislocation mechanisms in irradiated iron-based materials, by means of dislocation dynamics (DD) simulations.Evolutions of the radiation-induced defect microstructure are studied first. Namely, the 1D diffusion of interacting prismatic loops is analyzed using the stochastic dislocation dynamics approach, accounting for the elastic forces acting between the loops and the stochastic forces associated with ambient thermal fluctuations. It is found that the interplay between stochastic forces and internal degrees of freedom of loops, in particular the loop reorientation, strongly influences the observed loop dynamics, especially the reaction rates resulting in the elastic confinement of loops.The cross-slip effect on the dislocation/loop interactions is then examined using a specific initial configuration associated with the glide plane change of a screw dislocation source, due to a single and well defined cross-slip event. It is shown that cross-slip significantly affects the effective strength of dislocation/defect interactions and therefore, post-irradiation plastic strain spreading.Lastly, post-irradiation plastic strain spreading is investigated at the grain scale using segment-based dislocation dynamics simulations, accounting for the thermally activated (screw) dislocation slip and cross-slip mechanisms. It is shown that each simulated irradiation condition can be characterized by a specific “Defect-Induced Apparent Straining Temperature shift” (ΔDIAT) level, reflecting the statistical evolutions of the effective dislocation mobility. It is found that the calculated ΔDIAT level closely matches the ductile to brittle transition temperature shift (ΔDBTT) associated with the corresponding, experimentally-observed defect size and number density. This ΔDIAT/ΔDBTT correlation can be explained based on plastic strain spreading arguments.
|
3 |
Evolution microstructurale du fer pur et d’un alliage Fe-Cr sous irradiation avec injection simultanée d’hélium : étude expérimentale et modélisation / Microstructural evolution of pure iron and a Fe-Cr alloy under irradiation with simultaneous injection of helium : experimental study and modelingBrimbal, Daniel 02 December 2011 (has links)
Les aciers ferrito-martensitiques sont d’excellents candidats potentiels en tant que matériaux de structure dans les futurs réacteurs de fusion. A ce titre, ils devront résister à des flux intenses de neutrons de 14 MeV qui créeront des cascades de déplacements atomiques et des produits de transmutation tels que l’hélium. Afin de mieux comprendre le comportement de base de ces aciers sous irradiation en présence d’hélium, nous avons étudié les effets de l’hélium et ceux du chrome dans le cadre de ce travail de thèse. Du fer pur et un alliage modèle Fe-5,4%pds Cr ont ainsi été irradiés dans la plateforme JANNuS à 500°C en bi-faisceau avec des ions Fe+ et He+ et en mono-faisceau avec des ions Fe+. L’utilisation de cette plateforme a permis de suivre l’évolution du dommage jusqu’à des doses faibles (1 dpa) et de caractériser la microstructure après irradiation à forte dose (100 dpa). Elle a également permis l’observation in situ dans un MET couplé à deux accélérateurs des effets cinétiques d’implantation/irradiation. La nature et la répartition des défauts d’irradiation ont été déterminés : ce sont essentiellement des boucles de dislocations de vecteur de Burgers de type a<100> et des cavités/bulles. Nous avons montré que la co-implantation d’hélium et l’addition de chrome réduisent la mobilité des boucles. Par ailleurs, avec ou sans hélium, l’addition de chrome réduit le gonflement dans toutes les conditions étudiées. De plus, dans le fer pur irradié avec hélium, un phénomène original de germination hétérogène de cavités/bulles dans les plans des boucles a été mis en évidence. Enfin, nous avons également utilisé le code de dynamique d’amas CRESCENDO pour interpréter les résultats expérimentaux dans le fer pur irradié avec hélium. / Ferritic-martensitic steels are excellent potential candidates for a use as structural materials in future fusion reactors. For this application, they will have to withstand high fluxes of 14 MeV neutrons that will create atomic displacement cascades and transmutation reactions which will produce large quantities of helium. In order to understand the basic mechanisms under irradiation with helium, we have studied the effects of helium and those of chromium. Pure iron and a Fe-5.4 wt. % Cr model alloy were irradiated at the JANNuS platform in dual-beam mode with Fe+ and He+ ions and in single-beam mode with Fe+ ions at 500ºC. This platform enabled us to follow the evolution of damage up to low doses (1 dpa) and to characterize the microstructure at high doses (100 dpa). It also allowed us to observe in situ irradiation/implantation kinetic effects in a TEM coupled to two accelerators. The nature and distribution of irradiation defects was determined: they are essentially dislocation loops with a<100> Burgers vectors and cavities/bubbles. We have demonstrated that the co-implantation of helium and the addition of chromium both reduce the mobility of dislocation loops. The addition of chromium reduces swelling for all the irradiation conditions studied, with or without helium. In pure iron irradiated with helium, an original phenomenon was discovered for the first time: cavities/bubbles nucleate heterogeneously on the planes of the dislocation loops. We have also interpreted our experimental results in pure iron irradiated with helium using the cluster dynamics code CRESCENDO.
|
4 |
Nanodéfauts formés sous irradiation aux électrons dans l’aluminium / Nanodefects Formed under Electron Irradiation in AluminumJacquelin, Camille 12 December 2018 (has links)
Sous irradiation, les flux de particules (neutrons, ions, électrons) créent des défauts ponctuels (lacunes et interstitiels) qui génèrent des défauts étendus (boucles de dislocation, cavités) responsables de la fragilisation des matériaux. L'aluminium est un matériau de faible masse et de faible énergie seuil de déplacement (Ed=16-19 eV) ce qui permet de créer les nanodéfauts étendus directement sous irradiation aux électrons dans un microscope électronique à transmission haute résolution (HRMET). Cet instrument permet non seulement de caractériser finement les nanodéfauts mais également d'étudier leur évolution in situ sous irradiation, ceci en fonction de la température, du taux de dommage et d'une pression partielle d'hydrogène. Nous avons constaté un effet important de la pression partielle d'hydrogène sur la cinétique de formation des boucles de dislocation et des cavités. Parallèlement, nous avons mis en place une modélisation multi-échelle des effets de taille finie et de discrétisation du réseau sur la morphologie d'équilibre des cavités à partir de calculs ab initio des énergies de surface et de liaison de petits amas lacunaires et des amas mixtes lacune-hydrogène. La caractérisation expérimentale des morphologies des cavités en fonction de leur taille met en évidence trois formes régulières : une forme de croix bordée par des surfaces {100}, une forme d'octaèdre non tronqué bordée par des surfaces {111} et une forme d'octaèdre tronqué, bordée par les surfaces {111} et {100} ainsi qu'un effet de taille finie entre ces formes prédit par le modèle. De même, la mesure des fluctuations morphologiques d'une cavité au cours de sa croissance ou de sa décroissance en taille révèle le rôle déterminant des nombres magiques fixés par la géométrie et la discrétisation du réseau. A partir du modèle thermodynamique des cavités et d'une caractérisation expérimentale de la densité volumique et de la distribution en taille des nanodéfauts, nous proposons un modèle de germination des cavités sous irradiation. Nous en déduisons une taille du germe critique et un taux de germination des cavités en fonction de la température et du taux de dommage, qui sont comparés aux valeurs expérimentales correspondantes extraites des observations in situ. Enfin, nous discutons de l'effet de l'hydrogène sur la stabilité des amas mixtes lacune-hydrogène et sur la cinétique de germination des cavités. / Under irradiation, flows of particles (neutrons, ions, electrons) induce ponctual defects (vacancies and interstitials) which generate extended defects (dislocation loops, cavities) that are responsible for materials weakening. Aluminum is a low mass material with a low displacement energy (Ed=16-19 eV) which allows the creation of extended defects directly under electron irradiation in a high resolution transmission electron microscope (HRTEM). This instrument allows not only a fine characterization of nanodefects but also to study their evolution in situ under irradiation, depending on temperature, damage rate and a partial pressure of hydrogen. We noticed an important effect of the hydrogen partial pressure on the kinetic of formation of the cavities and dislocation loops. Simultaneously, we developped a multiscale modelisation of finite size effets and structure discretisation on equilibrium shapes of cavities based on binding and surface energies determined by ab initio calculation of small vacancy clusters and mixted hydrogen vacancy clusters. Experimental characterization of cavity shapes according to the cavity radius reveals three regular shapes : a cross shape bounded by {100} surfaces, an octahedral non-truncated shape bounded by {111} surfaces and an octahedral truncated shape, bounded by {100} and {111} surfaces as well as the determination of a finite size effect predicted by the model. Also, measurements of cavity shape dispersion during its growth and decrease showed a dominant effet of magic numbers, fixed by geometry and frustration of the structure. Based on a thermodynamic model and a fine experimental characterization of volumic density, we propose a nucleation model of cavities under irradiation. We deduce from this model a critical cluster size and a rate of cavity nucleation depending of temperature and damage, which are compared to the corresponding experimental values extracted from in situ observations. Finally, we discuss the effect of hydrogen on the stability of vacancy-hydrogen clusters and on the kinteic of cavity nucleation.
|
Page generated in 0.0805 seconds