• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres

Kuhlmey, Boris T January 2003 (has links)
We describe the theory and implementation of a multipole method for calculating the modes of microstructured optical fibers (MOFs). We develop tools for exploiting results obtained through the multipole method, including a discrete Bloch transform. Using the multipole method, we study in detail the physical nature of solid core MOF modes, and establish a distinction between localized defect modes and extended modes. Defect modes, including the fundamental mode, can undergo a localization transition we identify with the mode�s cutoff. We study numerically and theoretically the cutoff of the fundamental and the second mode extensively, and establish a cutoff diagram enabling us to predict with accuracy MOF properties, even for exotic MOF geometries. We study MOF dispersion and loss properties and develop unconventional MOF designs with low losses and ultra-flattened near-zero dispersion on a wide wavelength range. Using the cutoff-diagram we explain properties of these MOF designs.
12

Modelling the effects of biogenic NOx and industrial H2S emissions on the South African Highveld and Waterberg regions

Bruwer, Adamus Paulus January 2017 (has links)
A comprehensive deposition and dispersion model was built for the South African Highveld and Waterberg areas using CALPUFF with the aim of studying the effects of biogenic NOx emissions on sulphur and nitrogen deposition. The effect of industrial H2S emission on sulphur deposition was also investigated for the Highveld. Emission sources inventoried or the Highveld and Waterberg area included industrial sources, vehicle exhaust emissions, household fuel burning emissions and emissions from power stations. The Highveld model was the most extensive. Three scenarios were modelled: average rainfall year (2001), below average rainfall year (2003) and above average rainfall year (2010). The modelling domain was 350 km × 350 km. The Waterberg priority area was only modelled for 2006 and the domain size was 130 km ×100 km. To quantify biogenic soil NOX emissions, models was constructed for both areas using land use data from CALMET, rainfall data and atmospheric ground level temperatures covering each modelling domain. Use was made of work done by Yienger and Levy (1995). To accommodate CALPUFF each area was divided into smaller area sources, each with a specific hourly NOX emission rate. The biogenic NOx emitted made up 3.96 %, 4.14 % and 3.34 % of total released NOx for 2001, 2003 and 2010 respectively. This is significantly more than is released by household fuel burning, small industrial sources and biomass burning. Dry nitrogen deposition rates were affected most, adding between 1.69 - 6.19 % at various receptor locations. Wet deposition rates were affected very little (0.13 % to 0.75 %). Effect on total nitrogen deposition rates ranged from 0.32 % to 1.77 %. CALPUFF was unable to account for H2S conversion to SO2 in its reaction scheme model, therefore conversion rates had to be approximated from observations made on the Highveld by Igbafe (2007). Assuming different conversion percentages for each season, and inputting the converted emissions rates as SO2 emissions sources into CALPUFF, it was predicted that H2S contributes an average of 4.85 %, an average of 5.95 %, and an average of 5.15 % for wet S, dry S and total S deposition respectively Highveld dispersion and deposition predictions are reported on for the three modelling periods of 2001, 2003 and 2010. The modelled biogenic emissions were included in the model. Spatial plots for wet, dry and total S and N deposition were produced. Wet, dry and total S and N deposition rates at specific receptor locations are reported on. Waterberg biogenic emission are only 2.3 % of total NOx emissions for the Waterberg area and would affect nitrogen deposition values very little compared to the nitrogen deposition produced by the emissions from Matimba and Medupi power stations. Because of this it was decided not to run a CALPUFF dispersion and deposition model for the Waterberg area. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
13

The impacts of weather and climate change on the spread of bluetongue into the United Kingdom

Burgin, Laura Elizabeth January 2011 (has links)
A large epizootic of the vector-borne disease bluetongue occurred in northern Europe from 2006-2009, costing the economies of the infected countries several hundreds of millions of euros. During this time, the United Kingdom (UK) was exposed to the risk of bluetongue by windborne incursions of infected Culicoides biting midges from the northern coast of mainland Europe. The first outbreaks which occurred in the UK in 2007 were attributed to this cause. Although bluetongue virus (BTV) no longer appears to be circulating in northern Europe, it is widely suggested that it and other midge-borne diseases may emerge again in the future, particularly under a changing climate. Spread of BTV is strongly influenced by the weather and climate however limited use has been made of meteorologically based models to generate predictions of its spread to the UK. The extent to which windborne BTV spread can be modelled at timescales from days to decades ahead, to inform tactical and strategic decisions taken to limit its transmission, is therefore examined here. An early warning system has been developed to predict possible incursion events on a daily timescale, based on an atmospheric dispersion model adapted to incorporate flight characteristics of the Culicoides vectors. The system’s warning of the first UK outbreak in September 2007 was found to be greatly beneficial to the UK livestock industry. The dispersion model is also shown to be a useful post-outbreak epidemiological analysis tool. A novel approach has been developed to predict BTV spread into the UK on climate-change timescales as dispersion modelling is not practical over extended periods of time. Using a combination of principal component and cluster analyses the synoptic scale atmospheric circulations which control when local weather conditions are suitable for midge incursions were determined. Changes in the frequency and timing of these large scale circulations over the period 2000 to 2050 were then examined using an ensemble of regional climate model simulations. The results suggest areas of UK under the influence of easterly winds may face a slight increase in risk and the length of the season where temperatures are suitable for BTV replication is likely to increase by around 20 days by 2050. However a high level of uncertainty is associated with these predictions so a flexible decision making approach should be adopted to accommodate better information as it becomes available in the future.
14

Dispersion modelling of volcanic emissions / Spridningsmodellering av utsläpp från vulkaner

Dingwell, Adam January 2016 (has links)
Gases and particles released by volcanoes pose a serious hazard to humans and society. Emissions can be transported over long distances before being reduced to harmless concentrations. Knowing which areas are, or will be, exposed to volcanic emissions is an important part inreducing the impact on human health and society. In this thesis, the dispersion of volcanic emissions is studied using a set of atmospheric models. The work includes contribution to the development of the Lagrangian Particle Dispersion Model FLEXPART-WRF. Three case studies have been performed, one studying potential ash emissions from potential future eruptions on Iceland, a second covering SO2 emissions from Mt. Nyiragongo in D.R. Congo, and a third studying the SO2 emission rate of the Holuhraun eruption (Iceland) in 2014–2015. The first study covers volcanic ash hazard for air traffic over Europe. Three years of meteorological data are used to repeatedly simulate dispersion from different eruption scenarios. The simulations are used to study the probability of hazardous concentrations in ash in European airspace. The ash hazard shows a seasonal variation with a higher probability of efficient eastward transport in winter, while summer eruptions pose a more persistent hazard. In the second study, regional gas exposure around Mt. Nyiragongo is modelled using flux measurements to improve the description of the emission source. Gases are generally transported to the north-west in June–August and to the south-west in December–January. A diurnal variation due to land breeze around lake Kivu contributes to high concentrations of SO2 along the northern shore during the night. Potentially hazardous concentrations are occasionally reached in populated areas in the region, but mainly during the nights. The third study uses inverse dispersion modelling to determine the height and emission rates based on traverse measurements of the plume at 80–240 km from the source. The calculated source term yields better agreement with satellite observations compared to commonly used column sources. The work in this thesis presents improvements in dispersion modelling of volcanic emissions through improved models, more accurate representation of the source terms, and through incorporating new types of measurements into the modelling systems. / Gas- och partikelutsläpp från vulkaner utgör en fara för människor och för vårt samhälle. Utsläppen kan transporteras över långa avstånd innan de reduceras till oskadliga halter. Att känna till vilka områden som utsätts för, eller kommer utsättas för, utsläppen är ett viktigt verktyg föratt minska påverkan på folkhälsa och samhälle. I avhandlingen studeras spridningen av utsläpp från vulkanutbrott med hjälp av en uppsättning numeriska atmosfärsmodeller. Den Lagrangiska Partikelspridningsmodellen FLEXPART-WRF har förbättrats och applicerats för spridningsmodellering av vulkanutbrott. Tre studier har utförts, en fokuserar på vulkanaska från potentiella framtida utbrott på Island, den andra studerar SO2-ustläpp från vulkanen Nyiragongo i Demokratiska Republiken Kongo, och den tredje studerar SO2-ustläpp från utbrottet i Holuhraun (Island) 2014–2015. Den första studien uppskattar sannolikheten för att vulkanaska från framtida vulkanutbrott på Island ska överskrida de gränsvärden som tillämpas för flygtrafik. Tre år av meteorologisk data används för att simulera spridningen från olika utbrottsscenarier. Sannolikheten för skadliga halter aska varierar med årstid, med en högre sannolikhet för effektiv transport österut under vintermånaderna, sommarutbrott är istället mer benägna att orsaka långvariga problem överspecifika områden. In den andra studien undersöks spridningen av SO2 från Nyiragongo över en ettårsperiod. Flödesmätningar av plymen används för att förbättra källtermen i modellen. Gaserna transporteras i regel mot nordväst i juni–augusti och mot sydväst i december–februari En dygnsvariation, kopplad till mesoskaliga processer runt Kivusjön, bidrar till förhöjda halter av SO2 nattetid längs Kivusjöns norra kust. Potentiellt skadliga halter av SO2 uppnås av och till i befolkade områden men huvudsakligen nattetid. Den tredje studien utnyttjar inversmodellering för att avgöra plymhöjd och gasutsläpp baserat på traversmätningar av plymen runt 80–240 km från utsläppskällan. Den beräknade källtermen resulterar i bättre överensstämmelse mellan modell- och satellitdata jämfört med enklare källtermer. Arbetet i den här avhandlingen presenterar flertalet förbättringar för spridningsmodellering av vulkanutbrott genom bättre modeller, nogrannare beskrivning av källtermer, och genom nya metoder för tillämpning av olika typer av mätdata.
15

Modelling atmospheric dispersal of fungal pathogens on continental scales to safeguard global wheat production

Meyer, Marcel January 2018 (has links)
The recent emergence of highly virulent strains of the pathogen causing wheat stem rust has been acknowledged as a threat to global food security. In infected wheat fields, vast amounts of pathogenic fungal spores are produced that can be carried away by wind. For targeted disease surveillance and control it is important to estimate when, where and how many fungal spores are dispersed from infected to susceptible wheat fields. In this study, high-performance computational resources are used to investigate long-distance dispersal revealing atmospheric pathways that connect entire continents. Mechanistic simulations of turbulent atmospheric spore dispersal are conducted. The analyses bring together a variety of data, including international field disease surveys and finely resolved meteorological model data. The UK Met Office's Langrangian stochastic particle dispersion model, NAME, is applied, extended and coupled to other models in a set of case studies. In the first case study, spore dispersal is analysed across Southern/East Africa, the Middle East, and Central/South Asia by simulating billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes. The circumstances under which virulent strains, such as Ug99, pose a risk to globally important wheat producing areas are identified. Simulation results indicate a negligible risk for dispersal from key wheat producing countries on the East African continent (Ethiopia, Kenya) directly to India and Pakistan. However, there is a considerable risk for atmospheric transport from the Arabian Peninsula to South Asia. Spore dispersal trends are quantified between all countries in the domain providing estimates which can be used to improve targeted sampling and control. In the second case study, dispersal from southern Africa to Australia is analysed. Simulation results, as well as data from phenotypic and genotypic analyses, support the hypothesis that extremely long-distance airborne dispersal across the Indian Ocean is possible, albeit rare. This indicates that the pathogen populations on the two continents are connected and underlines the importance of sharing surveillance intelligence between continents. The third case study focusses on Ethiopia, determining likely origins of strain TKTTF that recently caused severe epidemics in East Africa's largest wheat producing country. The analyses suggest inflow into Ethiopia from the Middle East via Yemen, consistent with field survey data. The risk for inflow of pathogens into Ethiopia from key neighbouring countries is ranked for different months of the wheat season. In the last results chapter a pilot study is summarized testing the feasibility of an automated short-term forecasting system for spore dispersal from the latest field disease detection sites. Whilst the functionality and practical relevance of the forecasting system is demonstrated, considerable challenges remain for testing the forecasts. The predictive simulation framework described in this thesis can be applied to any wheat producing area worldwide to assess dispersal risks. The research has broader relevance because long-distance dispersal is a key mechanism for the transmission of several crop and livestock diseases, and also plays an important role in other areas of ecology.
16

Porovnání výstupů z programů ALOHA a TerEx při jejich modelování rozptylu vybraných nebezpečných látek / Comparison of Outputs from the Software ALOHA and TerEx in Dispersion Modelling of Selected Hazardous Substances

HENDRYCH, Adam January 2012 (has links)
In the context of an increasing production of industrial toxic substances (TIC; Toxic Industrial Compound), the risk of accidental release of hazardous substances is growing in spite of the gradual implementation of safer technological processes and safety improvement measures. To mitigate the consequences of chemical accidents or to prepare preventive protective measures before the accident, it is necessary to know or at least estimate the course of accidents. In particular, it applies to the range of traumatic events and fatal accidents. One of the tools that can express the impact of accidents is modelling programs. This diploma thesis presents a comparison of outputs from two special types of software ? a foreign program the ALOHA and the TerEx developed in the Czech Republic. The purpose of the thesis was to indicate theoretical aspects related to gaseous toxic substances diffusion in the ground atmospheric layer and to describe modelling of their ill effects range. To achieve this objective, scientific literature and consultation with experts were used. The practical section of the thesis aimed at determining to what extent the results of both programs differ when initial conditions were identical. To achieve this goal, the intercomparison of outputs (e.g. hurtful concentration range) of the two programs that provided results for the same input data sets (type and quantity of hazardous substances, environmental temperature, wind speed, degree of cloud cover, weather stability class, type of ground surface) was used. After the assessment of the comparison it is possible to generalize the results stating that the software ALOHA compared to the TerEx is more conservative, which means that the ALOHA software provides longer anticipated ranges of danger. Therefore, it depends on the user (the person responsible ? crisis manager, intervention commander, mayor of the village), which approach they select or recommend ? to prepare a greater or a smaller area for a possible accident (to ensure public awareness, to implement technical measures to mitigate the impact of that accident, to assess the amount of financial resources, etc.). As a subsequent step it would be appropriate to verify the theoretical results experimentally, by field testing, which would be conducted under the same meteorological conditions under which the modelling was made by the mentioned programs. This would thus confirm the legitimacy of the special software use for the purpose of estimating the range of negative effects of chemical accidents.
17

The development of an ‘emission inventory tool’ for brickmaking clamp kilns

Akinshipe, Oladapo Bola January 2013 (has links)
An emission inventory tool for estimating SO2, NO2, and PM10 emissions from brick clamp kiln sites was developed from investigations performed on three representative South African clamp kiln sites in order to facilitate application for Atmospheric Emission Licenses (AELs) from these sources. The tool utilizes readily available site-specific parameters to generate emission factors for significant activities that emit the aforementioned pollutants. PM10 emission factors for significant processes were developed using empirical expressions from the Compilation of Air Pollutant Emission Factors (AP-42) documents. SO2 emission factor for clamp kiln firing was obtained from “reverse-modelling”, a technique that integrates ambient monitoring and dispersion modelling (using Atmospheric Dispersion Modelling System software) to “standardize” actual emission rate from an assumed rate of 1 g/s. The use of multiple point sources proved to improve the simulation of the buoyancy-induced plume rise; therefore, a “bi-point” source configuration was adopted for the kiln. The “reverse-modelling” technique and “bi-point” source configuration produced SO2 emission rates differing from -9 % to +22 % from mass balance results, indicating that the “reverse-modelling” calculations provide reliable emission estimates for SO2. An NO2 emission factor could not be obtained from the “reverse-modelling” technique due to experimental errors and the significant effect of NO2 emissions from other onsite air emission sources such as internal combustion engines. The NO2 emission factor was obtained from previous comprehensive study on a similar clamp kiln site. The emission factors obtained from this study were utilized in developing an “emission inventory tool” which is utilized by clay brick manufacturers in quantifying air emissions from their sites. Emissions quantification is a requirement for brick manufacturers to obtain an AEL which is regulated under South African environmental laws. It is suggested that the technique used here for SO2 emission confirmation could be used to estimate emissions from a volume or area source where combustion occurs and where knowledge of the source parameters is limited. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Chemical Engineering / unrestricted
18

A Polydispersed Gaussian-Moment Model for Polythermal, Evaporating, and Turbulent Multiphase Flow Applications

Allard, Benoit 06 April 2023 (has links)
A novel higher-order moment-closure method is applied for the Eulerian treatment of gas-particle multiphase flows characterized by a dilute polydisperse and polythermal particle phase. Based upon the polydisperse Gaussian-moment model (PGM) framework, the proposed model is derived by applying an entropy-maximization moment-closure formulation to the transport equation of the particle-number density function, which is equivalent to the Williams-Boltzmann equation for droplet sprays. The resulting set of first-order robustly-hyperbolic balance laws include a direct treatment for local higher-order statistics such as co-variances between particle distinguishable properties (i.e., diameter and temperature) and particle velocity. Leveraging the additional distinguishing variables, classical hydrodynamic droplet evaporation theory is considered to describe unsteady droplet vaporization. Further, studying turbulent multiphase flow theory, a first-order hyperbolicity maintaining approximation to turbulent flow diffusion-inertia effects is proposed. Investigations into the predictive capabilities of the model are evaluated relative to Lagrangian-based solutions for a range of flows, including aerosol dispersion and fuel-sprays. Further, the model is implemented in a massively parallel discontinuous-Galerkin framework. Validation of the proposed turbulence coupling model is subsequently performed against experimental data, and a qualitative analysis of the model is given for a qualitative liquid fuel-spray problem.
19

Modeling the tropospheric multiphase aerosol-cloud processing using the 3-D chemistry transport model COSMO-MUSCAT

Schrödner, Roland 17 March 2016 (has links) (PDF)
Die chemische Zusammensetzung und die physikalischen Eigenschaften von troposphärischen Gasen, Partikeln und Wolken hängen aufgrund zahlreicher Prozesse stark voneinander ab. Insbesondere chemische Multiphasenprozesse in Wolken können die physiko-chemischen Eigenschaften der Luft und troposphärischer Partikel klein- und großräumig verändern. Diese chemische Prozessierung des troposphärischen Aerosols innerhalb von Wolken beeinflusst die chemischen Umwandlungen in der Atmosphäre, die Bildung von Wolken, deren Ausdehnung und Lebensdauer, sowie die Transmissivität von einfallender und ausgehender Strahlung durch die Atmosphäre. Damit sind wolken-chemische Prozesse relevant für das Klima auf der Erde und für verschiedene Umweltaspekte. Daher ist ein umfassendes Verständnis dieser Prozesse wichtig. Die explizite Behandlung chemischer Reaktionen in der Flüssigphase stellt allerdings eine Herausforderung für atmosphärische Computermodelle dar. Detaillierte Beschreibungen der Flüssigphasenchemie werden deshalb häufig nur für Boxmodelle verwendet. Regionale Chemie-Transport-Modelle und Klimamodelle berücksichtigen diese Prozesse meist nur mit vereinfachten chemischen Mechanismen oder Parametrisierungen. Die vorliegende Arbeit hat zum Ziel, den Einfluss der chemischer Mehrphasenprozesse innerhalb von Wolken auf den Verbleib relevanter Spurengase und Partikelbestandteile mit Hilfe des state‑of‑the‑art 3D-Chemie-Transport-Modells COSMO-MUSCAT zu untersuchen. Zu diesem Zweck wurde das Model um eine detaillierte Beschreibung chemischer Prozesse in der Flüssigphase erweitert. Zusätzlich wurde das bestehende Depositionsschema verbessert, um auch die Deposition von Nebeltropfen zu berücksichtigen. Die durchgeführten Modellerweiterungen ermöglichen eine bessere Beschreibung des troposphärischen Multiphasensystems. Das erweiterte Modellsystem wurde sowohl für künstliche 2D-Bergüberströmungsszenarien als auch für reale 3D-Simulationen angewendet. Mittels Prozess- und Sensitivitätsstudien wurde der Einfluss (i) des Detailgrades der verwendeten Mechanismen zur Beschreibung der Flüssigphasenchemie, (ii) der Größenauflösung des Tropfenspektrums und (iii) der Tropfenanzahl auf die chemischen Modellergebnisse untersucht. Die Studien belegen, dass die Auswirkungen der Wolkenchemie aufgrund ihres signifikanten Einflusses auf die Oxidationskapazität in der Gas- und Flüssigphase, die Bildung von organischer und anorganischer Partikelmasse sowie die Azidität der Wolkentropfen und Partikel in regionalen Chemie-Transport-Modellen berücksichtigt werden sollten. Im Vergleich zu einer vereinfachten Beschreibung der Wolkenchemie führt die Verwendung des detaillierten chemischen Flüssigphasenmechanismus C3.0RED zu verringerten Konzentrationen wichtiger Oxidantien in der Gasphase, einer höheren Nitratmasse in der Nacht, geringeren nächtlichen pH-Werten und einer veränderten Sulfatbildung. Darüber hinaus ermöglicht eine detaillierte Wolkenchemie erst Untersuchungen zur Bildung sekundärer organischer Partikelmasse in der Flüssigphase. Die größenaufgelöste Behandlung der Flüssigphasenchemie hatte nur geringen Einfluss auf die chemischen Modellergebnisse. Schließlich wurde das erweiterte Modell für Fallstudien zur Feldmesskampagne HCCT‑2010 genutzt. Zum ersten Mal wurde dabei ein chemischer Mechanismus mit der Komplexität von C3.0RED verwendet. Die räumlichen Effekte realer Wolken z. B. auf troposphärische Oxidantien oder die Bildung anorganischer Masse wurden untersucht. Der Vergleich der Modellergebnisse mit verfügbaren Messungen hat viele Übereinstimmungen aber auch interessante Unterschiede aufgezeigt, die weiter untersucht werden müssen. / In the troposphere, a vast number of interactions between gases, particles, and clouds affect their physico-chemical properties, which, therefore, highly depend on each other. Particularly, multiphase chemical processes within clouds can alter the physico-chemical properties of the gas and the particle phase from the local to the global scale. This cloud processing of the tropospheric aerosol may, therefore, affect chemical conversions in the atmosphere, the formation, extent, and lifetime of clouds, as well as the interaction of particles and clouds with incoming and outgoing radiation. Considering the relevance of these processes for Earth\'s climate and many environmental issues, a detailed understanding of the chemical processes within clouds is important. However, the treatment of aqueous phase chemical reactions in numerical models in a comprehensive and explicit manner is challenging. Therefore, detailed descriptions of aqueous chemistry are only available in box models, whereas regional chemistry transport and climate models usually treat cloud chemical processes by means of rather simplified chemical mechanisms or parameterizations. The present work aims at characterizing the influence of chemical cloud processing of the tropospheric aerosol on the fate of relevant gaseous and particulate aerosol constituents using the state-of-the-art 3‑D chemistry transport model (CTM) COSMO‑MUSCAT. For this purpose, the model was enhanced by a detailed description of aqueous phase chemical processes. In addition, the deposition schemes were improved in order to account for the deposition of cloud droplets of ground layer clouds and fogs. The conducted model enhancements provide a better insight in the tropospheric multiphase system. The extended model system was applied for an artificial mountain streaming scenario as well as for real 3‑D case studies. Process and sensitivity studies were conducted investigating the influence of (i) the detail of the used aqueous phase chemical representation, (ii) the size-resolution of the cloud droplets, and (iii) the total droplet number on the chemical model output. The studies indicated the requirement to consider chemical cloud effects in regional CTMs because of their key impacts on e.g., oxidation capacity in the gas and aqueous phase, formation of organic and inorganic particulate mass, and droplet acidity. In comparison to rather simplified aqueous phase chemical mechanisms focusing on sulfate formation, the use of the detailed aqueous phase chemistry mechanism C3.0RED leads to decreased gas phase oxidant concentrations, increased nighttime nitrate mass, decreased nighttime pH, and differences in sulfate mass. Moreover, the treatment of detailed aqueous phase chemistry enables the investigation of the formation of aqueous secondary organic aerosol mass. The consideration of size-resolved aqueous phase chemistry shows only slight effects on the chemical model output. Finally, the enhanced model was applied for case studies connected to the field experiment HCCT-2010. For the first time, an aqueous phase mechanism with the complexity of C3.0RED was applied in 3‑D chemistry transport simulations. Interesting spatial effects of real clouds on e.g., tropospheric oxidants and inorganic mass have been studied. The comparison of the model output with available measurements revealed many agreements and also interesting disagreements, which need further investigations.
20

Modeling the tropospheric multiphase aerosol-cloud processing using the 3-D chemistry transport model COSMO-MUSCAT

Schrödner, Roland 27 January 2016 (has links)
Die chemische Zusammensetzung und die physikalischen Eigenschaften von troposphärischen Gasen, Partikeln und Wolken hängen aufgrund zahlreicher Prozesse stark voneinander ab. Insbesondere chemische Multiphasenprozesse in Wolken können die physiko-chemischen Eigenschaften der Luft und troposphärischer Partikel klein- und großräumig verändern. Diese chemische Prozessierung des troposphärischen Aerosols innerhalb von Wolken beeinflusst die chemischen Umwandlungen in der Atmosphäre, die Bildung von Wolken, deren Ausdehnung und Lebensdauer, sowie die Transmissivität von einfallender und ausgehender Strahlung durch die Atmosphäre. Damit sind wolken-chemische Prozesse relevant für das Klima auf der Erde und für verschiedene Umweltaspekte. Daher ist ein umfassendes Verständnis dieser Prozesse wichtig. Die explizite Behandlung chemischer Reaktionen in der Flüssigphase stellt allerdings eine Herausforderung für atmosphärische Computermodelle dar. Detaillierte Beschreibungen der Flüssigphasenchemie werden deshalb häufig nur für Boxmodelle verwendet. Regionale Chemie-Transport-Modelle und Klimamodelle berücksichtigen diese Prozesse meist nur mit vereinfachten chemischen Mechanismen oder Parametrisierungen. Die vorliegende Arbeit hat zum Ziel, den Einfluss der chemischer Mehrphasenprozesse innerhalb von Wolken auf den Verbleib relevanter Spurengase und Partikelbestandteile mit Hilfe des state‑of‑the‑art 3D-Chemie-Transport-Modells COSMO-MUSCAT zu untersuchen. Zu diesem Zweck wurde das Model um eine detaillierte Beschreibung chemischer Prozesse in der Flüssigphase erweitert. Zusätzlich wurde das bestehende Depositionsschema verbessert, um auch die Deposition von Nebeltropfen zu berücksichtigen. Die durchgeführten Modellerweiterungen ermöglichen eine bessere Beschreibung des troposphärischen Multiphasensystems. Das erweiterte Modellsystem wurde sowohl für künstliche 2D-Bergüberströmungsszenarien als auch für reale 3D-Simulationen angewendet. Mittels Prozess- und Sensitivitätsstudien wurde der Einfluss (i) des Detailgrades der verwendeten Mechanismen zur Beschreibung der Flüssigphasenchemie, (ii) der Größenauflösung des Tropfenspektrums und (iii) der Tropfenanzahl auf die chemischen Modellergebnisse untersucht. Die Studien belegen, dass die Auswirkungen der Wolkenchemie aufgrund ihres signifikanten Einflusses auf die Oxidationskapazität in der Gas- und Flüssigphase, die Bildung von organischer und anorganischer Partikelmasse sowie die Azidität der Wolkentropfen und Partikel in regionalen Chemie-Transport-Modellen berücksichtigt werden sollten. Im Vergleich zu einer vereinfachten Beschreibung der Wolkenchemie führt die Verwendung des detaillierten chemischen Flüssigphasenmechanismus C3.0RED zu verringerten Konzentrationen wichtiger Oxidantien in der Gasphase, einer höheren Nitratmasse in der Nacht, geringeren nächtlichen pH-Werten und einer veränderten Sulfatbildung. Darüber hinaus ermöglicht eine detaillierte Wolkenchemie erst Untersuchungen zur Bildung sekundärer organischer Partikelmasse in der Flüssigphase. Die größenaufgelöste Behandlung der Flüssigphasenchemie hatte nur geringen Einfluss auf die chemischen Modellergebnisse. Schließlich wurde das erweiterte Modell für Fallstudien zur Feldmesskampagne HCCT‑2010 genutzt. Zum ersten Mal wurde dabei ein chemischer Mechanismus mit der Komplexität von C3.0RED verwendet. Die räumlichen Effekte realer Wolken z. B. auf troposphärische Oxidantien oder die Bildung anorganischer Masse wurden untersucht. Der Vergleich der Modellergebnisse mit verfügbaren Messungen hat viele Übereinstimmungen aber auch interessante Unterschiede aufgezeigt, die weiter untersucht werden müssen. / In the troposphere, a vast number of interactions between gases, particles, and clouds affect their physico-chemical properties, which, therefore, highly depend on each other. Particularly, multiphase chemical processes within clouds can alter the physico-chemical properties of the gas and the particle phase from the local to the global scale. This cloud processing of the tropospheric aerosol may, therefore, affect chemical conversions in the atmosphere, the formation, extent, and lifetime of clouds, as well as the interaction of particles and clouds with incoming and outgoing radiation. Considering the relevance of these processes for Earth\''s climate and many environmental issues, a detailed understanding of the chemical processes within clouds is important. However, the treatment of aqueous phase chemical reactions in numerical models in a comprehensive and explicit manner is challenging. Therefore, detailed descriptions of aqueous chemistry are only available in box models, whereas regional chemistry transport and climate models usually treat cloud chemical processes by means of rather simplified chemical mechanisms or parameterizations. The present work aims at characterizing the influence of chemical cloud processing of the tropospheric aerosol on the fate of relevant gaseous and particulate aerosol constituents using the state-of-the-art 3‑D chemistry transport model (CTM) COSMO‑MUSCAT. For this purpose, the model was enhanced by a detailed description of aqueous phase chemical processes. In addition, the deposition schemes were improved in order to account for the deposition of cloud droplets of ground layer clouds and fogs. The conducted model enhancements provide a better insight in the tropospheric multiphase system. The extended model system was applied for an artificial mountain streaming scenario as well as for real 3‑D case studies. Process and sensitivity studies were conducted investigating the influence of (i) the detail of the used aqueous phase chemical representation, (ii) the size-resolution of the cloud droplets, and (iii) the total droplet number on the chemical model output. The studies indicated the requirement to consider chemical cloud effects in regional CTMs because of their key impacts on e.g., oxidation capacity in the gas and aqueous phase, formation of organic and inorganic particulate mass, and droplet acidity. In comparison to rather simplified aqueous phase chemical mechanisms focusing on sulfate formation, the use of the detailed aqueous phase chemistry mechanism C3.0RED leads to decreased gas phase oxidant concentrations, increased nighttime nitrate mass, decreased nighttime pH, and differences in sulfate mass. Moreover, the treatment of detailed aqueous phase chemistry enables the investigation of the formation of aqueous secondary organic aerosol mass. The consideration of size-resolved aqueous phase chemistry shows only slight effects on the chemical model output. Finally, the enhanced model was applied for case studies connected to the field experiment HCCT-2010. For the first time, an aqueous phase mechanism with the complexity of C3.0RED was applied in 3‑D chemistry transport simulations. Interesting spatial effects of real clouds on e.g., tropospheric oxidants and inorganic mass have been studied. The comparison of the model output with available measurements revealed many agreements and also interesting disagreements, which need further investigations.

Page generated in 0.1326 seconds