• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension

Hill, Thomas 15 October 2020 (has links)
No description available.
2

Estimations de dispersion et de Strichartz dans un domaine cylindrique convexe / Dispersive and Strichartz estimates for the wave equation inside cylindrical convex domains

Meas, Len 29 June 2017 (has links)
Dans ce travail, nous allons établir des estimations de dispersion et des applications aux inégalités de Strichartz pour les solutions de l’équation des ondes dans un domaine cylindrique convexe Ω ⊂ R³ à bord C∞, ∂Ω ≠ ∅. Les estimations de dispersion sont classiquement utilisées pour prouver les estimations de Strichartz. Dans un domaine Ω général, des estimations de Strichartz ont été démontrées par Blair, Smith, Sogge [6,7]. Des estimations optimales ont été prouvées dans [29] lorsque Ω est strictement convexe. Le cas des domaines cylindriques que nous considérons ici généralise les resultats de [29] dans le cas où la courbure positive dépend de l'angle d'incidence et s'annule dans certaines directions. / In this work, we establish local in time dispersive estimates and its application to Strichartz estimates for solutions of the model case Dirichlet wave equation inside cylindrical convex domains Ω ⊂ R³ with smooth boundary ∂Ω ≠ ∅. Let us recall that dispersive estimates are key ingredients to prove Strichartz estimates. Strichartz estimates for waves inside an arbitrary domain Ω have been proved by Blair, Smith, Sogge [6,7]. Optimal estimates in strictly convex domains have been obtained in [29]. Our case of cylindrical domains is an extension of the result of [29] in the case where the nonnegative curvature radius depends on the incident angle and vanishes in some directions.
3

Équation des ondes sur les espaces symétriques riemanniens de type non compact / Wave equation on Riemannian symmetric spaces of the non compact type

Hassani, Ali 06 June 2011 (has links)
Ce mémoire porte sur l’étude des équations d’évolution sur des variétés à coubure non nulle, plus particulièrement l’équation des ondes sur les espaces symétriques riemanniens de type non compact.Des propriétés de dispersion des solutions du problème de Cauchy homogène sont démontrées. Ces propriétés sont ensuite utilisées pour établir des estimations dites estimations de Strichartz. L’examen de ces estimées permet de déduire que le problème de Cauchy non linéaire avec des non-linéarités de type puissance est globalement bien posé pour des données initiales petites et localement bien posé pour des données arbitraires.Après un chapitre introductif dédié aux définitions, propriétés algébriques et géométriques des espaces symétriques et à quelques aspects élémentaires d’analyse harmonique sphérique sur ces espaces, un article est présenté : Wave equation on Riemannian symmetric spaces. Cet article contient nos résultats principaux. Dans le dernier chapitre nous présentons en détail deux problèmes ouverts qui prolongent nos travaux. Il s’agit respectivement d’établir le lien entre le comportement asymptotique des estimées et les orbites nilpotentes, et l’étude de l’équation des ondes pour les formes différentielles sur les espaces symétriques. / In this memoir we study evolution equations on curved manifolds. In particular we are interested in the wave equation on Riemannian symmetric spaces of the noncompact type.Dispersive properties of solutions of homogeneous Cauchy problem are proved. These properties are then used to establish Strichartz-type estimates. A closer study of these estimates shows that the nonlinear Cauchy problem with power-like nonlinearities is globally well posed for small initial data and locally well posed for arbitrary initial data.The first chapter is devoted to definitions, algebraic and geometric properties of symmetric spaces and to few elementary aspects of spherical analysis on these spaces. Then our main results are represented in an article : Wave equation on Riemannian symmetric spaces. In the last chapter we present in detail two open problems for future work. One issue is to establish a link between the asymptotic behavior of the estimates and nilpotent orbits, while another issue is the study of wave equation for differential forms on symmetric spaces.

Page generated in 0.0763 seconds