Spelling suggestions: "subject:"dissertations -- amathematics"" "subject:"dissertations -- bmathematics""
51 |
Topology control in wireless ad hoc networksHassan, Ahmed Mohamed Ali Omer 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Wireless ad hoc networks are increasingly used in today’s life in various areas ranging from environmental monitoring to the military. For technical reasons, they are severely limited in terms of battery power, communication capacity and computation capability. Research has been carried out to deal with these limitations using different approaches. A theoretical treatment of the subject is topology control whose basic task is to design network topologies with special properties that make them energy-efficient and interference-optimal.
We study, implement and compare the XTC and CBTC algorithms in terms of interference reduction, length stretch factor and maximum degree. These two algorithms have two features that are absent in almost all competitive topology control algorithms which are practicality and maintaining connectivity. Both algorithms show good performance in terms of interference reduction and maintaining a good length stretch factor. Regarding CBTC, we prove that it is a power spanner.
We show through extensive simulation that the degree distribution of wireless ad hoc networks modelled by the log-normal model is binomial if the average degree is not high. We find that there is no fixed threshold for the average degree at which the distribution is distorted and no longer binomial.
We show through simulation that the node density which ensures the absence of isolated nodes is a tight lower bound for the node density which ensures connectivity. The implication of this result is that connectivity is ensured with high probability if the minimum node degree is equal to 1.
Finally we show through simulation that the log-normal model is not a realistic representation of wireless ad hoc networks if the environmental parameter is at least 6. This result is important because there are no available measurements to determine the range of the environmental parameter for typical frequencies used in wireless ad hoc networks. / AFRIKAANSE OPSOMMING: Koordlose ad hoc netwerke word toenemend gebruik in vandag se lewe op verskillende gebiede wat wissel van die omgewing monitor tot militêregebruik. Vir tegniese redes is hulle ernstig beperk in terme van battery krag, kommunikasie kapasiteit en berekeningsvermoë. Navorsing vanuit verkillende benaderings word gedoen om met hierdie beperkings te deel. ’n Teoretiese benadering tot onderwerp is topologie beheer. Die basiese taak is om netwerktopologieë met spesiale eienskappe wat hulle energie-doeltreffend en interferensieoptimaal maak te ontwerp.
Ons bestudeer, implementeer en vergelyk die XTC en CBTC algoritmes in terme van interferensie vermindering, lengte rek faktor en maksimum graad. Beide hierdie algoritmes het twee eienskappe wat afwesig is in byna al die mededingende topologie beheer algoritmes: hulle is prakties en handhaf verbindings. Beide algoritmes toon goeie prestasie in terme van interferensie verminder en die handhawing van ’n goeie lengte rek faktor. Ten opsigte van CBTC bewys ons dat dit ’n “power spanner” is.
Ons wys deur middel van uitgebreide simulasie dat die graad verdeling van die koordlose ad hoc netwerke wat deur die log-normale model gemodelleer kan word binomiaal is as die gemiddelde graad nie hoog is nie. Ons vind dat daar geen vaste drempel is vir die gemiddelde graad waarby die verdeling vervorm en nie meer binomiaal is nie.
Ons wys deur simulasie dat die node digtheid wat die afwesigheid van geïsoleerde nodusse verseker ’n streng ondergrens vir die node digtheid wat konnektiviteit verseker is. Die implikasie van hierdie resultaat is dat ‘n konneksie verseker word as die minimum node graad gelyk is aan 1. Ten slotte wys ons deur simulasie dat die log-normale model nie ’n realistiese voorstelling van koordlose ad hoc netwerke is wanneer die “environmental parameter” groter is as 6 nie. Hierdie resultaat is belangrik, want daar is geen beskikbare metings om die grense van hierdie parameter vir ’n tipiese frekwensie gebruik in koordlose ad hoc netwerke te bepaal nie.
|
52 |
Properties of greedy treesRazanajatovo Misanantenaina, Valisoa 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: A greedy tree is constructed from a given degree sequence using a simple
greedy algorithm that assigns the highest degree to the root, the second,
the third, . . . , -highest degree to the root’s neighbours, etc. This particular
tree is the solution to numerous extremal problems among all trees with
given degree sequence. In this thesis, we collect results for some distancebased
graph invariants, the number of subtrees and the spectral radius
in which greedy trees play a major role. We show that greedy trees are
extremal for the aforementioned graph invariants by means of two different
approaches, one using level greedy trees and majorization, while the other
one is somewhat more direct. Finally, we prove some new results on greedy
trees for additive parameters with specific toll functions. / AFRIKAANSE OPSOMMING: ’n Gulsige boom word vanuit ’n gegewe graadry deur middel van ’n eenvoudige
gulsige algoritme gebou, wat die hoogste graad aan die wortel
toewys, die tweede-, derde-, . . . , -hoogste graad aan die wortel se bure,
ens. Hierdie spesifieke boom is die oplossing van ’n groot aantal ekstremale
probleme onder al die bome met gegewe graadry. In hierdie tesis
beskou ons ’n versameling van resultate oor afstand-gebaseerde grafiekinvariante,
die aantal subbome en die spektraalstraal waarin gulsige bome
’n belangrike rol speel. Ons bewys dat gulsige bome ekstremaal vir die
bogenoemde grafiekinvariante is deur van twee verskillende tegnieke gebruik
te maak: een met behulp van vlak-gulsige bome en majorering, en
’n ander metode wat effens meer direk is. Laastens bewys ons sommige
nuwe resultate oor gulsige bome vir additiewe parameters met spesifieke
tolfunksies.
|
53 |
The class number one problem in function fieldsHarper, John-Paul 12 1900 (has links)
Thesis (MComm)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: In this dissertation I investigate the class number one problem in function fields. More
precisely I give a survey of the current state of research into extensions of a rational function
field over a finite field with principal ring of integers. I focus particularly on the quadratic
case and throughout draw analogies and motivations from the classical number field situation.
It was the "Prince of Mathematicians" C.F. Gauss who first undertook an in depth study of
quadratic extensions of the rational numbers and the corresponding rings of integers. More
recently however work has been done in the situation of function fields in which the arithmetic
is very similar.
I begin with an introduction into the arithmetic in function fields over a finite field and
prove the analogies of many of the classical results. I then proceed to demonstrate how the
algebra and arithmetic in function fields can be interpreted geometrically in terms of curves
and introduce the associated geometric language. After presenting some conjectures, I proceed
to give a survey of known results in the situation of quadratic function fields. I present also
a few results of my own in this section. Lastly I state some recent results regarding arbitrary
extensions of a rational function field with principal ring of integers and give some heuristic
results regarding class groups in function fields. / AFRIKAANSE OPSOMMING: In hierdie tesis ondersoek ek die klasgetal een probleem in funksieliggame. Meer spesifiek
ondersoek ek die huidige staat van navorsing aangaande uitbreidings van 'n rasionale funksieliggaam
oor 'n eindige liggaam sodat die ring van heelgetalle 'n hoofidealgebied is. Ek kyk in
besonder na die kwadratiese geval, en deurgaans verwys ek na die analoog in die klassieke
getalleliggaam situasie. Dit was die beroemde wiskundige C.F. Gauss wat eerste kwadratiese
uitbreidings van die rasionale getalle en die ooreenstemende ring van heelgetalle in diepte ondersoek
het. Onlangs het wiskundiges hierdie probleme ook ondersoek in die situasie van
funksieliggame oor 'n eindige liggaam waar die algebraïese struktuur baie soortgelyk is.
Ek begin met 'n inleiding tot die rekenkunde in funksieliggame oor 'n eindige liggaam en
bewys die analogie van baie van die klassieke resultate. Dan verduidelik ek hoe die algebra in
funksieliggame geometries beskou kan word in terme van kurwes en gee 'n kort inleiding tot
die geometriese taal. Nadat ek 'n paar vermoedes bespreek, gee ek 'n oorsig van wat alreeds
vir quadratiese funksieliggame bewys is. In hierdie afdeling word 'n paar resultate van my
eie ook bewys. Dan vermeld ek 'n paar resultate aangaande algemene uitbreidings van 'n
rasionale funksieliggaam oor 'n eindige liggaam waar die van ring heelgetalle 'n hoofidealgebied
is. Laastens verwys ek na 'n paar heurisitiese resultate aangaande klasgroepe in funksieliggame.
|
54 |
Investigating the simultaneous effect of age and temperature on the population dynamics of female tsetse fliesElama Ameh, Josephine, Ochigbo, Josephine Elanma 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Age and temperature are two factors that affect mortality in adult tsetse flies. Both are found
to be very important, but the simultaneous effect of these factors on the mortality rate have
not been studied. This study seeks to address this, with an application to a population of
female tsetse, using a model based on partial differential equations. Adult mortality is agedependent
and is modelled as the sum of two exponentials, with four parameters (coefficients
of each exponential): numerical analysis of a population model with this mortality structure
predicts exponential growth. Analysis of each of the parameters through parameter variation
shows that two of these parameters control the mortality of the nulliparous (ages 0 − 10
days) flies only while the other two only take care of flies of mature ages. Measurement of
the impact of these parameters on the mortality of tsetse of different ages by the normalized
forward sensitivity index method is also carried out. This is followed by fitting the model
based on the age-dependent mortality along with a constant tsetse birth rate to data representing
the catches of female Glossina pallidipes at Rekomitjie Research station, Zimbabwe.
Considering a three parameter adult tsetse mortality, parameter analysis shows the effect of
one of the parameters to affect the mortality of flies of all ages while a second controls only the
mature tsetse flies of reproductive ages. A further analysis resulted in the estimate of these
parameters as functions of temperature, thereby leading to the establishment of an age and
temperature-dependent adult tsetse mortality. Using data for the daily average temperature
records obtained in 1981 on Antelope Island, Lake Kariba, Zimbabwe, daily changes in the
pupal duration (adult tsetse birth rate) changes negatively with temperature change. Incorporating
this (temperature-dependent ) birth rate into the model, together with the established
age and temperature-dependent adult mortality, the adult tsetse population dynamics is explored
numerically. The latter model is then fitted to population data of female Glossina
morsitans morsitans obtained from the same Island and for the same period as used for
the temperature data. The data suggests peak tsetse population to be in the month of July
and lowest in the month of December. The first quarter of the year is predicted to be most
favorable for breeding tsetse while the second, showed a period of stable growth rate and a
time of tsetse abundance. In addition, the dynamics with both age and temperature showed a
non-uniform daily population growth contrary to that with age effect only. This study has enhanced
our understanding of tsetse population dynamics for age and temperature-dependent
adult mortality with temperature-dependent pupal duration and suggests the period of tsetse
abundance on Antelope Island. / AFRIKAANSE OPSOMMING: Geen opsomming in Afrikaans.
|
55 |
On towers of function fields over finite fieldsLotter, Ernest Christiaan 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / Explicit towers of algebraic function fields over finite fields are studied
by considering their ramification behaviour and complete splitting. While
the majority of towers in the literature are recursively defined by a single
defining equation in variable separated form at each step, we consider
towers which may have different defining equations at each step and with
arbitrary defining polynomials.
The ramification and completely splitting loci are analysed by directed
graphs with irreducible polynomials as vertices. Algorithms are exhibited
to construct these graphs in the case of n-step and -finite towers.
These techniques are applied to find new tamely ramified n-step towers
for 1 n 3. Various new tame towers are found, including a family
of towers of cubic extensions for which numerical evidence suggests that
it is asymptotically optimal over the finite field with p2 elements for each
prime p 5. Families of wildly ramified Artin-Schreier towers over small
finite fields which are candidates to be asymptotically good are also considered
using our method.
|
56 |
Off-line signature verificationCoetzer, Johannes 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2005. / A great deal of work has been done in the area of off-line signature verification over the
past two decades. Off-line systems are of interest in scenarios where only hard copies of
signatures are available, especially where a large number of documents need to be authenticated.
This dissertation is inspired by, amongst other things, the potential financial
benefits that the automatic clearing of cheques will have for the banking industry.
|
57 |
On the analysis of refinable functions with respect to mask factorisation, regularity and corresponding subdivision convergenceDe Wet, Wouter de Vos 12 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / We study refinable functions where the dilation factor is not always assumed to be 2. In
our investigation, the role of convolutions and refinable step functions is emphasized as a
framework for understanding various previously published results. Of particular importance
is a class of polynomial factors, which was first introduced for dilation factor 2 by
Berg and Plonka and which we generalise to general integer dilation factors.
We obtain results on the existence of refinable functions corresponding to certain reduced
masks which generalise similar results for dilation factor 2, where our proofs do not
rely on Fourier methods as those in the existing literature do.
We also consider subdivision for general integer dilation factors. In this regard, we extend
previous results of De Villiers on refinable function existence and subdivision convergence
in the case of positive masks from dilation factor 2 to general integer dilation factors.
We also obtain results on the preservation of subdivision convergence, as well as on the
convergence rate of the subdivision algorithm, when generalised Berg-Plonka polynomial
factors are added to the mask symbol.
We obtain sufficient conditions for the occurrence of polynomial sections in refinable
functions and construct families of related refinable functions.
We also obtain results on the regularity of a refinable function in terms of the mask
symbol factorisation. In this regard, we obtain much more general sufficient conditions
than those previously published, while for dilation factor 2, we obtain a characterisation of
refinable functions with a given number of continuous derivatives.
We also study the phenomenon of subsequence convergence in subdivision, which explains
some of the behaviour that we observed in non-convergent subdivision processes
during numerical experimentation. Here we are able to establish different sets of sufficient
conditions for this to occur, with some results similar to standard subdivision convergence,
e.g. that the limit function is refinable. These results provide generalisations of the corresponding
results for subdivision, since subsequence convergence is a generalisation of
subdivision convergence. The nature of this phenomenon is such that the standard subdivision
algorithm can be extended in a trivial manner to allow it to work in instances where
it previously failed.
Lastly, we show how, for masks of length 3, explicit formulas for refinable functions can
be used to calculate the exact values of the refinable function at rational points.
Various examples with accompanying figures are given throughout the text to illustrate
our results.
|
58 |
Polynomial containment in refinement spaces and wavelets based on local projection operatorsMoubandjo, Desiree V. 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: See full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
|
59 |
Refinable functions with prescribed values at the integersGavhi, Mpfareleni Rejoyce 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: See full text / AFRIKAANSE OPSOMMING: Sien volteks
|
60 |
Limit theorems for integer partitions and their generalisationsRalaivaosaona, Dimbinaina 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Various properties of integer partitions are studied in this work, in particular
the number of summands, the number of ascents and the multiplicities of
parts. We work on random partitions, where all partitions from a certain
family are equally likely, and determine moments and limiting distributions of
the different parameters.
The thesis focuses on three main problems: the first of these problems is
concerned with the length of prime partitions (i.e., partitions whose parts are
all prime numbers), in particular restricted partitions (i.e., partitions where
all parts are distinct). We prove a central limit theorem for this parameter
and obtain very precise asymptotic formulas for the mean and variance.
The second main focus is on the distribution of the number of parts of a
given multiplicity, where we obtain a very interesting phase transition from
a Gaussian distribution to a Poisson distribution and further to a degenerate
distribution, not only in the classical case, but in the more general context of
⋋-partitions: partitions where all the summands have to be elements of a given
sequence ⋋ of integers.
Finally, we look into another phase transition from restricted to unrestricted
partitions (and from Gaussian to Gumbel-distribution) as we study
the number of summands in partitions with bounded multiplicities. / AFRIKAANSE OPSOMMING: Verskillende eienskappe van heelgetal-partisies word in hierdie tesis bestudeer,
in die besonder die aantal terme, die aantal stygings en die veelvoudighede
van terme. Ons werk met stogastiese partisies, waar al die partisies in ’n
sekere familie ewekansig is, en ons bepaal momente en limietverdelings van die
verskillende parameters.
Die teses fokusseer op drie hoofprobleme: die eerste van hierdie probleme
gaan oor die lengte van priemgetal-partisies (d.w.s., partisies waar al die terme
priemgetalle is), in die besonder beperkte partisies (d.w.s., partisies waar al
die terme verskillend is). Ons bewys ’n sentrale limietstelling vir hierdie parameter
en verkry baie presiese asimptotiese formules vir die gemiddelde en die
variansie.
Die tweede hooffokus is op die verdeling van die aantal terme van ’n gegewe
veelvoudigheid, waar ons ’n baie interessante fase-oorgang van ’n normaalverdeling
na ’n Poisson-verdeling en verder na ’n ontaarde verdeling verkry, nie
net in die klassieke geval nie, maar ook in die meer algemene konteks van sogenaamde
⋋-partities: partisies waar al die terme elemente van ’n gegewe ry ⋋ van heelgetalle moet wees.
|
Page generated in 0.1088 seconds