• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 53
  • 2
  • 1
  • Tagged with
  • 127
  • 127
  • 125
  • 36
  • 24
  • 22
  • 20
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Topology control in wireless ad hoc networks

Hassan, Ahmed Mohamed Ali Omer 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Wireless ad hoc networks are increasingly used in today’s life in various areas ranging from environmental monitoring to the military. For technical reasons, they are severely limited in terms of battery power, communication capacity and computation capability. Research has been carried out to deal with these limitations using different approaches. A theoretical treatment of the subject is topology control whose basic task is to design network topologies with special properties that make them energy-efficient and interference-optimal. We study, implement and compare the XTC and CBTC algorithms in terms of interference reduction, length stretch factor and maximum degree. These two algorithms have two features that are absent in almost all competitive topology control algorithms which are practicality and maintaining connectivity. Both algorithms show good performance in terms of interference reduction and maintaining a good length stretch factor. Regarding CBTC, we prove that it is a power spanner. We show through extensive simulation that the degree distribution of wireless ad hoc networks modelled by the log-normal model is binomial if the average degree is not high. We find that there is no fixed threshold for the average degree at which the distribution is distorted and no longer binomial. We show through simulation that the node density which ensures the absence of isolated nodes is a tight lower bound for the node density which ensures connectivity. The implication of this result is that connectivity is ensured with high probability if the minimum node degree is equal to 1. Finally we show through simulation that the log-normal model is not a realistic representation of wireless ad hoc networks if the environmental parameter is at least 6. This result is important because there are no available measurements to determine the range of the environmental parameter for typical frequencies used in wireless ad hoc networks. / AFRIKAANSE OPSOMMING: Koordlose ad hoc netwerke word toenemend gebruik in vandag se lewe op verskillende gebiede wat wissel van die omgewing monitor tot militêregebruik. Vir tegniese redes is hulle ernstig beperk in terme van battery krag, kommunikasie kapasiteit en berekeningsvermoë. Navorsing vanuit verkillende benaderings word gedoen om met hierdie beperkings te deel. ’n Teoretiese benadering tot onderwerp is topologie beheer. Die basiese taak is om netwerktopologieë met spesiale eienskappe wat hulle energie-doeltreffend en interferensieoptimaal maak te ontwerp. Ons bestudeer, implementeer en vergelyk die XTC en CBTC algoritmes in terme van interferensie vermindering, lengte rek faktor en maksimum graad. Beide hierdie algoritmes het twee eienskappe wat afwesig is in byna al die mededingende topologie beheer algoritmes: hulle is prakties en handhaf verbindings. Beide algoritmes toon goeie prestasie in terme van interferensie verminder en die handhawing van ’n goeie lengte rek faktor. Ten opsigte van CBTC bewys ons dat dit ’n “power spanner” is. Ons wys deur middel van uitgebreide simulasie dat die graad verdeling van die koordlose ad hoc netwerke wat deur die log-normale model gemodelleer kan word binomiaal is as die gemiddelde graad nie hoog is nie. Ons vind dat daar geen vaste drempel is vir die gemiddelde graad waarby die verdeling vervorm en nie meer binomiaal is nie. Ons wys deur simulasie dat die node digtheid wat die afwesigheid van geïsoleerde nodusse verseker ’n streng ondergrens vir die node digtheid wat konnektiviteit verseker is. Die implikasie van hierdie resultaat is dat ‘n konneksie verseker word as die minimum node graad gelyk is aan 1. Ten slotte wys ons deur simulasie dat die log-normale model nie ’n realistiese voorstelling van koordlose ad hoc netwerke is wanneer die “environmental parameter” groter is as 6 nie. Hierdie resultaat is belangrik, want daar is geen beskikbare metings om die grense van hierdie parameter vir ’n tipiese frekwensie gebruik in koordlose ad hoc netwerke te bepaal nie.
52

Properties of greedy trees

Razanajatovo Misanantenaina, Valisoa 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: A greedy tree is constructed from a given degree sequence using a simple greedy algorithm that assigns the highest degree to the root, the second, the third, . . . , -highest degree to the root’s neighbours, etc. This particular tree is the solution to numerous extremal problems among all trees with given degree sequence. In this thesis, we collect results for some distancebased graph invariants, the number of subtrees and the spectral radius in which greedy trees play a major role. We show that greedy trees are extremal for the aforementioned graph invariants by means of two different approaches, one using level greedy trees and majorization, while the other one is somewhat more direct. Finally, we prove some new results on greedy trees for additive parameters with specific toll functions. / AFRIKAANSE OPSOMMING: ’n Gulsige boom word vanuit ’n gegewe graadry deur middel van ’n eenvoudige gulsige algoritme gebou, wat die hoogste graad aan die wortel toewys, die tweede-, derde-, . . . , -hoogste graad aan die wortel se bure, ens. Hierdie spesifieke boom is die oplossing van ’n groot aantal ekstremale probleme onder al die bome met gegewe graadry. In hierdie tesis beskou ons ’n versameling van resultate oor afstand-gebaseerde grafiekinvariante, die aantal subbome en die spektraalstraal waarin gulsige bome ’n belangrike rol speel. Ons bewys dat gulsige bome ekstremaal vir die bogenoemde grafiekinvariante is deur van twee verskillende tegnieke gebruik te maak: een met behulp van vlak-gulsige bome en majorering, en ’n ander metode wat effens meer direk is. Laastens bewys ons sommige nuwe resultate oor gulsige bome vir additiewe parameters met spesifieke tolfunksies.
53

The class number one problem in function fields

Harper, John-Paul 12 1900 (has links)
Thesis (MComm)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: In this dissertation I investigate the class number one problem in function fields. More precisely I give a survey of the current state of research into extensions of a rational function field over a finite field with principal ring of integers. I focus particularly on the quadratic case and throughout draw analogies and motivations from the classical number field situation. It was the "Prince of Mathematicians" C.F. Gauss who first undertook an in depth study of quadratic extensions of the rational numbers and the corresponding rings of integers. More recently however work has been done in the situation of function fields in which the arithmetic is very similar. I begin with an introduction into the arithmetic in function fields over a finite field and prove the analogies of many of the classical results. I then proceed to demonstrate how the algebra and arithmetic in function fields can be interpreted geometrically in terms of curves and introduce the associated geometric language. After presenting some conjectures, I proceed to give a survey of known results in the situation of quadratic function fields. I present also a few results of my own in this section. Lastly I state some recent results regarding arbitrary extensions of a rational function field with principal ring of integers and give some heuristic results regarding class groups in function fields. / AFRIKAANSE OPSOMMING: In hierdie tesis ondersoek ek die klasgetal een probleem in funksieliggame. Meer spesifiek ondersoek ek die huidige staat van navorsing aangaande uitbreidings van 'n rasionale funksieliggaam oor 'n eindige liggaam sodat die ring van heelgetalle 'n hoofidealgebied is. Ek kyk in besonder na die kwadratiese geval, en deurgaans verwys ek na die analoog in die klassieke getalleliggaam situasie. Dit was die beroemde wiskundige C.F. Gauss wat eerste kwadratiese uitbreidings van die rasionale getalle en die ooreenstemende ring van heelgetalle in diepte ondersoek het. Onlangs het wiskundiges hierdie probleme ook ondersoek in die situasie van funksieliggame oor 'n eindige liggaam waar die algebraïese struktuur baie soortgelyk is. Ek begin met 'n inleiding tot die rekenkunde in funksieliggame oor 'n eindige liggaam en bewys die analogie van baie van die klassieke resultate. Dan verduidelik ek hoe die algebra in funksieliggame geometries beskou kan word in terme van kurwes en gee 'n kort inleiding tot die geometriese taal. Nadat ek 'n paar vermoedes bespreek, gee ek 'n oorsig van wat alreeds vir quadratiese funksieliggame bewys is. In hierdie afdeling word 'n paar resultate van my eie ook bewys. Dan vermeld ek 'n paar resultate aangaande algemene uitbreidings van 'n rasionale funksieliggaam oor 'n eindige liggaam waar die van ring heelgetalle 'n hoofidealgebied is. Laastens verwys ek na 'n paar heurisitiese resultate aangaande klasgroepe in funksieliggame.
54

Investigating the simultaneous effect of age and temperature on the population dynamics of female tsetse flies

Elama Ameh, Josephine, Ochigbo, Josephine Elanma 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Age and temperature are two factors that affect mortality in adult tsetse flies. Both are found to be very important, but the simultaneous effect of these factors on the mortality rate have not been studied. This study seeks to address this, with an application to a population of female tsetse, using a model based on partial differential equations. Adult mortality is agedependent and is modelled as the sum of two exponentials, with four parameters (coefficients of each exponential): numerical analysis of a population model with this mortality structure predicts exponential growth. Analysis of each of the parameters through parameter variation shows that two of these parameters control the mortality of the nulliparous (ages 0 − 10 days) flies only while the other two only take care of flies of mature ages. Measurement of the impact of these parameters on the mortality of tsetse of different ages by the normalized forward sensitivity index method is also carried out. This is followed by fitting the model based on the age-dependent mortality along with a constant tsetse birth rate to data representing the catches of female Glossina pallidipes at Rekomitjie Research station, Zimbabwe. Considering a three parameter adult tsetse mortality, parameter analysis shows the effect of one of the parameters to affect the mortality of flies of all ages while a second controls only the mature tsetse flies of reproductive ages. A further analysis resulted in the estimate of these parameters as functions of temperature, thereby leading to the establishment of an age and temperature-dependent adult tsetse mortality. Using data for the daily average temperature records obtained in 1981 on Antelope Island, Lake Kariba, Zimbabwe, daily changes in the pupal duration (adult tsetse birth rate) changes negatively with temperature change. Incorporating this (temperature-dependent ) birth rate into the model, together with the established age and temperature-dependent adult mortality, the adult tsetse population dynamics is explored numerically. The latter model is then fitted to population data of female Glossina morsitans morsitans obtained from the same Island and for the same period as used for the temperature data. The data suggests peak tsetse population to be in the month of July and lowest in the month of December. The first quarter of the year is predicted to be most favorable for breeding tsetse while the second, showed a period of stable growth rate and a time of tsetse abundance. In addition, the dynamics with both age and temperature showed a non-uniform daily population growth contrary to that with age effect only. This study has enhanced our understanding of tsetse population dynamics for age and temperature-dependent adult mortality with temperature-dependent pupal duration and suggests the period of tsetse abundance on Antelope Island. / AFRIKAANSE OPSOMMING: Geen opsomming in Afrikaans.
55

On towers of function fields over finite fields

Lotter, Ernest Christiaan 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / Explicit towers of algebraic function fields over finite fields are studied by considering their ramification behaviour and complete splitting. While the majority of towers in the literature are recursively defined by a single defining equation in variable separated form at each step, we consider towers which may have different defining equations at each step and with arbitrary defining polynomials. The ramification and completely splitting loci are analysed by directed graphs with irreducible polynomials as vertices. Algorithms are exhibited to construct these graphs in the case of n-step and -finite towers. These techniques are applied to find new tamely ramified n-step towers for 1 n 3. Various new tame towers are found, including a family of towers of cubic extensions for which numerical evidence suggests that it is asymptotically optimal over the finite field with p2 elements for each prime p 5. Families of wildly ramified Artin-Schreier towers over small finite fields which are candidates to be asymptotically good are also considered using our method.
56

Off-line signature verification

Coetzer, Johannes 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2005. / A great deal of work has been done in the area of off-line signature verification over the past two decades. Off-line systems are of interest in scenarios where only hard copies of signatures are available, especially where a large number of documents need to be authenticated. This dissertation is inspired by, amongst other things, the potential financial benefits that the automatic clearing of cheques will have for the banking industry.
57

On the analysis of refinable functions with respect to mask factorisation, regularity and corresponding subdivision convergence

De Wet, Wouter de Vos 12 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2007. / We study refinable functions where the dilation factor is not always assumed to be 2. In our investigation, the role of convolutions and refinable step functions is emphasized as a framework for understanding various previously published results. Of particular importance is a class of polynomial factors, which was first introduced for dilation factor 2 by Berg and Plonka and which we generalise to general integer dilation factors. We obtain results on the existence of refinable functions corresponding to certain reduced masks which generalise similar results for dilation factor 2, where our proofs do not rely on Fourier methods as those in the existing literature do. We also consider subdivision for general integer dilation factors. In this regard, we extend previous results of De Villiers on refinable function existence and subdivision convergence in the case of positive masks from dilation factor 2 to general integer dilation factors. We also obtain results on the preservation of subdivision convergence, as well as on the convergence rate of the subdivision algorithm, when generalised Berg-Plonka polynomial factors are added to the mask symbol. We obtain sufficient conditions for the occurrence of polynomial sections in refinable functions and construct families of related refinable functions. We also obtain results on the regularity of a refinable function in terms of the mask symbol factorisation. In this regard, we obtain much more general sufficient conditions than those previously published, while for dilation factor 2, we obtain a characterisation of refinable functions with a given number of continuous derivatives. We also study the phenomenon of subsequence convergence in subdivision, which explains some of the behaviour that we observed in non-convergent subdivision processes during numerical experimentation. Here we are able to establish different sets of sufficient conditions for this to occur, with some results similar to standard subdivision convergence, e.g. that the limit function is refinable. These results provide generalisations of the corresponding results for subdivision, since subsequence convergence is a generalisation of subdivision convergence. The nature of this phenomenon is such that the standard subdivision algorithm can be extended in a trivial manner to allow it to work in instances where it previously failed. Lastly, we show how, for masks of length 3, explicit formulas for refinable functions can be used to calculate the exact values of the refinable function at rational points. Various examples with accompanying figures are given throughout the text to illustrate our results.
58

Polynomial containment in refinement spaces and wavelets based on local projection operators

Moubandjo, Desiree V. 03 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: See full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
59

Refinable functions with prescribed values at the integers

Gavhi, Mpfareleni Rejoyce 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: See full text / AFRIKAANSE OPSOMMING: Sien volteks
60

Limit theorems for integer partitions and their generalisations

Ralaivaosaona, Dimbinaina 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Various properties of integer partitions are studied in this work, in particular the number of summands, the number of ascents and the multiplicities of parts. We work on random partitions, where all partitions from a certain family are equally likely, and determine moments and limiting distributions of the different parameters. The thesis focuses on three main problems: the first of these problems is concerned with the length of prime partitions (i.e., partitions whose parts are all prime numbers), in particular restricted partitions (i.e., partitions where all parts are distinct). We prove a central limit theorem for this parameter and obtain very precise asymptotic formulas for the mean and variance. The second main focus is on the distribution of the number of parts of a given multiplicity, where we obtain a very interesting phase transition from a Gaussian distribution to a Poisson distribution and further to a degenerate distribution, not only in the classical case, but in the more general context of ⋋-partitions: partitions where all the summands have to be elements of a given sequence ⋋ of integers. Finally, we look into another phase transition from restricted to unrestricted partitions (and from Gaussian to Gumbel-distribution) as we study the number of summands in partitions with bounded multiplicities. / AFRIKAANSE OPSOMMING: Verskillende eienskappe van heelgetal-partisies word in hierdie tesis bestudeer, in die besonder die aantal terme, die aantal stygings en die veelvoudighede van terme. Ons werk met stogastiese partisies, waar al die partisies in ’n sekere familie ewekansig is, en ons bepaal momente en limietverdelings van die verskillende parameters. Die teses fokusseer op drie hoofprobleme: die eerste van hierdie probleme gaan oor die lengte van priemgetal-partisies (d.w.s., partisies waar al die terme priemgetalle is), in die besonder beperkte partisies (d.w.s., partisies waar al die terme verskillend is). Ons bewys ’n sentrale limietstelling vir hierdie parameter en verkry baie presiese asimptotiese formules vir die gemiddelde en die variansie. Die tweede hooffokus is op die verdeling van die aantal terme van ’n gegewe veelvoudigheid, waar ons ’n baie interessante fase-oorgang van ’n normaalverdeling na ’n Poisson-verdeling en verder na ’n ontaarde verdeling verkry, nie net in die klassieke geval nie, maar ook in die meer algemene konteks van sogenaamde ⋋-partities: partisies waar al die terme elemente van ’n gegewe ry ⋋ van heelgetalle moet wees.

Page generated in 0.1088 seconds