• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissipative dynamics of atomic Bose-Einstein condensates at zero temperature

Wu, ZHIGANG 26 April 2013 (has links)
In this thesis we study various dissipative processes that are associated with the flow of an atomic Bose-Einstein condensate at zero temperature. In particular, we investigate the effect of a weak correlated disorder potential on the collective dipole motion of a harmonically-confined elongated condensate. By using an extension of the Harmonic Potential Theorem, we demonstrate that the dynamics of the system can be described equivalently in terms of a disorder potential oscillating relative to a stationary condensate. This latter point of view allows the application of linear response theory to determine the drag force experienced by the condensate and to evaluate the damping rate of the centre of mass oscillation. The density response function for the elongated condensate is determined with a new local density approximation that takes into account the tight radial confinement of the atomic cloud. Our linear response theory reveals the detailed dependence of the damping rate on various system parameters. A comparison with available experimental data is only partially successful and points to the need for additional experiments. In addition to disorder induced dissipation, we also consider a variety of other problems that can be addressed by means of linear response theory. For example, we study momentum transferred to a condensate by a Bragg pulse and the energy absorption of a gas in an optical lattice that is parametrically modulated in different ways. All of these applications demonstrate the utility of linear response theory in describing the dynamics of Bose-condensed systems which are subjected to weak perturbations. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2013-04-26 10:54:11.915
2

Exploring Nonlinear Responses of Quantum Dissipative Systems from Reduced Hierarchy Equations of Motion Approach / 階層型運動方程式による量子散逸系の非線形応答の研究

Sakurai, Atsunori 23 May 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第17771号 / 理博第3894号 / 新制||理||1562(附属図書館) / 30578 / 京都大学大学院理学研究科化学専攻 / (主査)教授 谷村 吉隆, 准教授 安藤 耕司, 教授 寺嶋 正秀 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Dynamique et contrôle de systèmes quantiques ouverts / Dynamics and control of open quantum systems

Chenel, Aurélie 16 July 2014 (has links)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel. / The study of quantum effects as quantum coherences and their exploitation for control by laser pulse are still a numerical challenge in big systems. To reduce the dimensionality of the problem, dissipative dynamics focuses on a quantum subspace called 'system', that includes the most important degrees of freedom. The system is coupled to a thermal bath made of harmonic oscillators. The essential tool of dissipative dynamics is the spectral density of the bath, that contains all the information about the bath and the interaction between the system and the bath. Several strategies coexist and complement one another. We adopt a non-Markovian quantum master equation for the evolution of the density matrix associated to the system. This approach, developped by C. Meier and D.J. Tannor, is perturbative in the system-bath coupling, but not in the interaction with a laser field. Our goal is to confront this methodology to realistic systems calibrated by ab initio electronic structure calculations. We first study the ultrafast electron transfer modelling an oligothiophene-fullerene heterojunction, found in organic photovoltaic cells. We present a way of overcoming the limitation of the perturbative regime, using a Brownian oscillator representation to describe the problem. Charge transfer is faster but less complete when the R distance between oligothiophene and fullerene fragments increases. Then we combine the quantum dynamical method described above with the Optimal Control Theory (OCT) method. An application is the control of an isomerization, the Cope rearrangement, in the context of Diels-Alder reactions. Including the dissipation at the design stage of the field enables the control algorithm to react on the environment-induced decoherence and to lead to a better yield. Comparing one and two-dimension models shows that control finds a mechanism adapted to the model. In two dimensions, it actively acts on the two coordinates of the model. In one dimension, decoherence is minimized by accelerating the way through the delocalized states located above the potential energy barrier.
4

Theory of Transfer Processes in Molecular Nano-Hybrid Systems / A Stochastic Schrödinger Equation Approach for Large-Scale Open Quantum System Dynamics

Plehn, Thomas 19 March 2020 (has links)
Das Verstehen der elektronischen Prozesse in Nano-Hybridsystemen, bestehend aus Molekülen und Halbleiterstrukturen, eröffnet neue Möglichkeiten für optoelektronische Bauteile. Dafür benötigt es nanoskopische und gleichzeitig atomare Modelle und somit angepasste Rechenmethoden. Insbesondere "Standard"-Ansätze für die Dynamik offener Quantensysteme werden mit zunehmender Systemgröße jedoch sehr ineffizient. In dieser Arbeit wird eine neue Methode basierend auf einer stochastischen Schrödinger-Gleichung etablieren. Diese umgeht die numerischen Limits der Quanten-Mastergleichung und ermöglicht Simulationen von imposanter Größe. Ihr enormes Potenzial wird hier in Studien zu Anregungsenergietransfer und Ladungsseparation an zwei realistischen Nano-Hybridsystemen demonstriert: para-sexiphenyl Moleküle auf einer flachen ZnO Oberfläche (6P/ZnO), und ein tubuläres C8S3 Farbstoffaggregat gekoppelt an einen CdSe Nanokristall (TFA/NK). Im 6P/ZnO System findet nach optischer Anregung Energietransfer vom 6P Anteil zum ZnO statt. Direkt an der Grenzfläche können Frenkel-Exzitonen zusätzlich Ladungsseparation initiieren, wobei Elektronen ins ZnO transferiert werden und Löcher im 6P Anteil verbleiben. Beide Mechanismen werden mittels laserpulsinduzierter ultraschneller Wellenfunktionsdynamik simuliert. Danach wird die langsamere dissipative Lochkinetik im 6P Anteil studiert. Hierfür wird die eigene Simulationstechnik der stochastischen Schrödinger-Gleichung verwendet. Die Studie an der TFA/NK Grenzfläche basiert auf einer gigantischen equilibrierten Aggregatstruktur aus 4140 Molekülen. Ein generalisiertes Frenkel-Exzitonenmodell wird benutzt. Der Ansatz der stochastischen Schrödinger-Gleichung ermöglicht bemerkenswerte Einblicke in die Aggregat-interne Exzitonenrelaxation. Danach werden inkohärente Raten des Exzitonentransfers zum NK berechnet. Unterschiedliche räumliche Konfigurationen werden untersucht und es wird diskutiert, warum das Förster-Modell hier keine Gültigkeit besitzt. / Understanding the electronic processes in hybrid nano-systems based on molecular and semiconductor elements opens new possibilities for optoelectronic devices. Therefore, it requires for models which are both nanoscopic and atomistic, and so for adapted computational methods. In particular, "standard" methods for open quantum system dynamics however become very inefficient with increasing system size. In this regard, it is a key challenge of this thesis, to establish a new stochastic Schrödinger equation technique. It bypasses the computational limits of the quantum master equation and enables dissipative simulations of imposing dimensionality. Its enormous potential is demonstrated in studies on excitation energy transfer and charge separation processes in two realistic nanoscale hybrid systems: para-sexiphenyl molecules deposited on a flat ZnO surface (6P/ZnO), and a tubular dye aggregate of C8S3 cyanines coupled to a CdSe nanocrystal (TDA/NC). After optical excitation, the 6P/ZnO system exhibits exciton transfer from the 6P part to the ZnO. Close to the interface, Frenkel excitons may further initiate charge separation where electrons enter the ZnO and holes remain in the 6P part. Both mechanisms are simulated in terms of laser-pulse induced ultrafast wave packet dynamics. Afterwards, slower dissipative hole motion in the 6P part is studied. For this purpose, the own stochastic Schrödinger equation simulation technique is applied. The study on the TDA/NC interface is based on a gigantic equilibrated nuclear structure of the aggregate including 4140 dyes. A generalized Frenkel exciton model is employed. Thanks to the stochastic Schrödinger equation approach, energy relaxation in the exciton band of the TDA is simulated in outstanding quality and extend. Then, incoherent rates for exciton transfer to the NC are computed. Different spatial configurations are studied and it is discussed why the Förster model possesses no validity here.

Page generated in 0.0937 seconds