• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 135
  • 33
  • 24
  • 24
  • 20
  • 20
  • 17
  • 15
  • 13
  • 12
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Environmental assessment of municipal solid waste incinerator bottom ash in road constructions

Olsson, Susanna January 2005 (has links)
<p>There are several incentives for using bottom ash from municipal solid waste incineration (MSWI bottom ash) as a construction material, such as for road construction. These incentives include decreased disposal of material on landfills and a reduced amount of raw material extracted for road building purposes. However, one of the main obstacles to utilising the material is uncertainties regarding its environmental properties. The overall objective of this thesis is to describe the potential environmental impacts of utilising MSWI bottom ash in constructions and to improve the tools for environmental assessments.</p><p>An environmental systems analysis (ESA) approach based on a life cycle perspective was outlined and used in a case study, with the aim of describing the differences in resource use and emissions that can be expected if crushed rock in the sub-base of a road in the Stockholm region in Sweden were to be substituted by MSWI bottom ash. The whole life cycle of the road was taken into account and the alternative disposal of the bottom ash was included. It was found that the studied alternatives would cause different types of potential environmental impact; whereas the conventional alternative with only crushed rock in the road’s sub-base would lead to larger use of energy and natural resources, the alternative with MSWI bottom ash in the sub-base would lead to larger contaminant leaching. It was concluded that a life cycle approach is needed in order to include both resource use and emissions in the comparison between the two alternative scenarios. The leaching of metals turned out to be the most important environmental aspect for the comparison and in particular the difference in copper (Cu) leaching was shown to be large.</p><p>However, a large amount of Cu may not pose an environmental threat if the Cu is strongly bound to dissolved organic carbon (DOC). In order to improve the basis for toxicity estimates and environmental risk assessments, and thereby provide better input values for ESAs, the speciation of Cu to DOC in MSWI bottom ash leachate was studied. It was found that Cu to a large extent was bound to DOC, which is consistent with previous research. The results also suggest that the hydrophilic fraction of the MSWI bottom ash DOC is important for Cu complexation and that the pH-dependence for Cu complexation to MSWI bottom ash DOC is smaller than for natural DOC. This implies that models calibrated for natural DOC may give inconsistent simulations of Cu-DOC complexation in MSWI bottom ash leachate.</p>
32

Evaluation of the efficiency of treatment techniques in removing perfluoroalkyl substances from water / Utvärdering av behandlingstekniker för att rena vatten från perfluoralkylerade ämnen

Lundgren, Sandra January 2014 (has links)
Perfluoroalkylated substances (PFASs) are a group of synthetic compounds that have gained growing attention due to their environmental persistence, toxicity and their potential to bioaccumulate. Even though PFASs are not occurring naturally in our environment, they are globally distributed and can be found ubiquitously in air, water, soil, wildlife as well as in humans. PFASs have primarily been used, due to their unique properties of being both hydrophilic and hydrophobic, as surfactants in numerous products such as firefighting foams, paint, leather and textile coating. The occurrence of PFASs in drinking water as well as in wastewater makes it important to develop effective techniques to remove these compounds from drinking water sources and wastewater. To be able to effectively remove PFASs from drinking water and wastewater it is important to understand which treatment process is most efficient and how the removal efficiency is affected by the physicochemical properties of PFASs and characteristics of water. In this study, the removal efficiency of PFASs was investigated using six different water types with varying dissolved organic carbon (DOC) character. Four different treatment techniques were evaluated including anion exchange using MIEX® resins, coagulation with iron (III) chloride (FeCl3), adsorption using powdered activated carbon (PAC) and nanofiltration (NF) membrane. The batch experiments were performed in laboratory-scale for 14 individual PFASs including C3-11, C13 perfluoroalkyl carboxylic acids (PFCAs), C4, C6, C8 perfluoroalkyl sulfonic acids (PFSAs) and perfluorooctane sulfonamide (FOSA). The results showed that the removal efficiency of PFASs was dependent on both perfluorocarbon chain length as well as functional group, with an increase in removal efficiency with increased perfluorocarbon chain length. Short-chained PFASs (C!6) were removed in less extent than the long chained PFASs for all treatment techniques. Amongst the four treatment techniques investigated, NF membrane exhibited the best removal efficiency for both short- and long chained PFASs (on average, 51%). Lower removal efficiencies for PFASs were observed for MIEX (33%) &lt; FeCl3 (16%) &lt; PAC (14%). However, all tested treatment techniques used in this study exhibited generally low removal efficiency (&lt; 78%), in particular for the short-chained PFASs (C!6, &lt; 41%) Results using three different doses of PAC (i.e. 20, 50, 100 mg L-1) showed an increase in removal (i.e. 2.2-41%, 8.0-78% and 12-92% respectively) with increasing dose. No significant trends were found between PFAS removal and DOC removal for any of the treatments (p&lt;0.05, student t-test). However, the removal efficiency was different of the six different water types, which indicates that the DOC characteristics (i.e. Freshness, humification index, pH and absorbance) have an influence on the removal efficiency of PFASs in water. / Perfluoroalkylerade ämnen (PFASer) är en grupp syntetiska ämnen som har fått allt större uppmärksamhet den senaste tiden då de har visat sig vara persistenta, toxiska och bioackumulerande. Även om PFASer inte förekommer naturligt i vår miljö är de globalt fördelade och kan återfinnas i luft, vatten, mark, djur och hos människor. PFASer har främst använts, på grund av sina unika egenskaper att vara både hydrofila och hydrofoba, som tensider i många produkter såsom brandsläckningsskum, färg, läder och textil. Förekomsten av PFASer i dricksvattentäkter och i många reningsverk gör det viktigt att utveckla effektiva metoder för att ta bort dessa föreningar i vattenreningsverk. För att effektivt kunna avlägsna PFASer från dricks- och avloppsvatten är det viktigt att ha kunskap om vilken behandlingsmetod som är effektivast och hur reningseffektiviteten påverkas av ämnenas fysikalisk-kemiska egenskaper och vattnets karaktär.   Syftet med denna studie var att undersökta reningseffektiviteten för PFASer i sex olika vatten innehållande olika typer av löst organiskt kol (DOC). Detta undersöktes för fyra olika behandlingsteknikert; jonbyte med MIEX®, koagulering med järnklorid (FeCl3), adsorption med hjälp av pulveriserat aktivt kol (PAC) och nanofiltrering. Försöken gjordes små skaligt i laboratorie och 14 olika PFASer undersöktes; C3-11,13  perfluoralkyl karboxylsyror (PFCAer), C4, C6, C8, perfluoralkyl sulfonsyror (PFSAer) och perfluoroktan sulfonamid (FOSA). Resultaten visar att reningseffektiviteten för PFASer var beroende av både den perfluorerade kolkedjans längd och funktionell grupp, med en ökning av reningseffektivitet med längre perfluorerad kolkedja. PFASer med kort perfluorerad kolkedja (C≤6) renades i mindre utsträckning än PFASer med lång perfluorerad kolkedjade; detta gällde för alla behandlingstekniker. Bland de fyra behandlingstekniker som undersöktes uppvisade nanofiltreringen den bästa reningseffektiviteten för PFASer med både korta och långa kolkedjor (i genomsnitt, 51%.). Lägre reningseffektivitet för PFASer observerades för MIEX®(33%), &lt; FeCl3(16%) &lt; PAC (14%). Totalt sett erhölls en relativt låg reningseffektivitet (&lt;78%) för samtliga reningstekniker, speciellt för de kortkedjade PFASer (C£6, &lt; 41%). Resultat från försök med tre olika doser PAC (e.g. 20, 50, 100 mg L-1) visade på en ökad reningseffektivitet (2,2-41%, 8,0-78% och 12-92%) med ökad dos PAC. Inga signifikanta trender kunde urskiljas vad gäller reningseffektivitet av PFASer och rening av DOC (p&lt;0.05, student t-test), detta gällde för samtliga behandlingstekniker. Det fanns dock tydliga skillnader i reningseffektivitet mellan de sex olika vattentyperna vilket indikerar på att DOC egenskaperna (Freshnessindex, humifieringsindex, pH, absorbans) har en påverkan på reningseffektiviteten för PFASer i vatten.
33

Evaluating the effects of multiple environmental stressors on the behaviour and physiology of a freshwater prey fish

2015 April 1900 (has links)
The skin of many fishes contains large epidermal club cells (ECCs) that are known to release chemicals (alarm cues) that warn other fishes of danger. Initial research on ECCs focussed on their role in predator avoidance behaviour, however later research revealed that these cells might also have immune functions. Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms simultaneously get exposed to multiple environmental stressors. We have seen considerable reductions in stratospheric ozone with a concomitant increase in global ultraviolet radiation (UVR). Metal pollution associated with industrial activity is also increasing on a global scale. Cadmium (Cd) is one such ubiquitous pollutant which is known to be toxic to organisms at extremely low concentrations. The main goal of my PhD research was to understand how multiple environmental stressors play a role in altering ECC investment and chemically-mediated predator-prey interactions by indirectly elucidating the evolutionary role of ECCs. The first experiment investigated the effects of in vivo ultraviolet radiation (UVR) exposure on ECC investment, physiological stress responses and potency of alarm cues in fathead minnows (Pimephales promelas). Subsequently, I investigated the interactive effects of UVR and/or waterborne cadmium (Cd) exposure using the same end points. I found that minnows exposed to UVR, either in the presence or absence of Cd, showed consistent decrease in ECC investment compared to non-exposed controls. There was a significant increase in cortisol levels of UVR exposed minnows compared to unexposed minnows. However, the combined exposure of UVR and Cd reduced cortisol levels relative to that in UVR only exposure. Surprisingly, there was no difference in the potency of the cues prepared from the skin of UVR and/or Cd exposed or non-exposed fish indicating that UVR and/or Cd exposure combined may have little influence on chemically-mediated predator-prey interactions. In aquatic systems, much of the negative effects of UVR are minimized by dissolved organic carbon (DOC) which is known to attenuate rates of UVR across the water column. In my third study, I investigated if DOC played a role in ameliorating the effects of in vivo UVR exposure on physiological stress and ECC investment in fathead minnows. I used two sources of DOC, a commercial soil based DOC (Sigma Aldrich Humic Acid) and a terrigenous source of DOC (Luther Marsh Natural Organic Matter). I found that fish exposed to UVR, in the presence of either source of DOC, in the presence and absence of UV blocking filter, maintained high ECC investment and reduced cortisol levels compared to fish exposed to UVR only. Studies that have examined factors that influence ECC investment have often been hampered by large variation in baseline levels of ECC. The larger the baseline variation in ECC number, the more difficult it is to elucidate factors responsible for changes in ECC investment. While I did not find this problematic in my work with UVR and Cd, others have failed to find effects in manipulative experiments. Consequently, my fourth study examined between and within variation in ECC investment across multiple sites in Saskatchewan and tried to investigate if holding fish under controlled laboratory conditions for up to 28 days would help reduce variation in ECC investment between and within populations. I found some evidence that I could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment.
34

Hydrological Controls on Mercury Mobility and Transport from a Forested Hillslope during Spring Snowmelt

Haynes, Kristine 20 November 2012 (has links)
Upland environments are important sources of mercury (Hg) to downstream wetlands and water bodies. Hydrology is instrumental in facilitating Hg transport within, and export from watersheds. Two complementary studies were conducted to assess the role hydrological processes play in controlling Hg mobility and transport in forested uplands. A field study compared runoff and Hg fluxes from three, replicate hillslope plots during two contrasting spring snowmelt periods, in terms of snowpack depth and timing. Hillslope Hg fluxes were predominately flow-driven. The melting of soil frost significantly delayed a large portion of the Hg flux later into the spring following a winter with minimal snow accumulation. A microcosm laboratory study using a stable Hg isotope tracer applied to intact soil cores investigated the relative controls of soil moisture and precipitation on Hg mobility. Both hydrologic factors control the mobility of contemporary Hg; with greatest Hg flushing from dry soils under high-flow conditions.
35

The impact of storm characteristics and land use on nutrient export in two glaciated watersheds in central Indiana, USA / Laura E. Wagner.

Wagner, Laura E. January 2007 (has links)
Thesis (M.S.)--Indiana University, 2007. / Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Philippe G. Vidon, Lenore P. Tedesco, Kathy J. Licht. Includes vitae. Includes bibliographical references (leaves 110-114).
36

Dissolved organic matter characterization in a large arctic river : origins and dynamic

Le Dantec, Théo Aurelien 02 February 2018 (has links) (PDF)
Arctic regions are expected to be highly sensitive to climate change regarding the prediction of disproportionately large increases in surface temperatures and their related influence over the hydrological cycle and permafrost thaw. These modifications have the potential to impact biogeochemical cycles in these regions and in particular the mobilization of organic carbon into rivers. The most crucial period in arctic rivers hydrological cycle is the spring freshet that can account for most of the annual organic carbon transfers to the ocean in a very short window of time. The focus of this thesis was to monitor the dynamic of DOM in terms of quantity and quality along the hydrological cycle of the Yenisei river, through DOM characterization approaches to reveal seasonal variations in its composition, sources, age and degradation state. The first step was to make a review of the full range of existing DOM characterization approaches in worldwide river systems to identify the most widely used, the most relevant and reliable ones. Through the development of a DOM quality measurements database, we have been able to evaluate the geographical coverage of DOM characterization studies, to give estimates and ranges of values of the main reported DOM characterization variables and to observe global trends of DOM quality across latitudinal gradient. Second stage was to investigate DOC dynamic in the Yenisei river with regard to quantity and links with water chemistry and hydrology. We conducted sampling campaigns during three consecutive years (2014 to 2016), covering with a high sampling frequency the spring flood period to capture its very dynamic evolution. We reported DOC concentrations that followed the hydrograph with highest concentrations observed a few days before peak discharge. DOC concentration also responded to discharge variation (increase, likely due to higher precipitation) in early autumn. We reported average DOC flux over the three sampling years of about 4.53 Tg yr-1 which is within the range of values reported in the literature. We observed interannual variability with annual export estimates ranging from 5.45 Tg yr-1 in 2014 to 3.57 Tg yr-1 in 2016, likely driven by discharge amplitude. We confirmed the important role of spring freshet in DOC export with on average more than 65% occurring during this period (roughly May/June). Third point was to determine DOM quality combining characterization techniques. Combination of approaches helped to strengthen observations and cross validate interpretations. Most of the variables reported from the different characterization techniques confirmed one each other. The use of lignin biomarkers, optical properties and radiocarbon age of DOM allowed us to trace DOM main sources has primarily deriving from recently produced organic matter leached from boreal forest litter and top soil horizon during the spring flood and older organic matter derived from deeper soil horizons during low flow period.
37

Assessing the photoreactivity of peatland derived carbon in aquatic systems

Pickard, Amy Elizabeth January 2017 (has links)
Northern peatlands are a globally important soil carbon (C) store, and aquatic systems draining peatland catchments receive a high loading of dissolved and particulate forms of C from the surrounding terrestrial environment. Once incorporated into the aquatic environment, internal processes occur to modify the C pool. Of these, photo-processing preferentially targets terrestrially derived C and therefore might have a significant effect on the C budget of peatland draining aquatic systems. The overarching aim of this study was to investigate photochemical processing of C in Scottish peatland draining aquatic systems in order to determine the importance of this pathway in aquatic biogeochemical cycles. For initial laboratory experiments, water samples from a peatland headwater stream (Auchencorth Moss, SE Scotland) were collected. Laboratory based irradiation experiments were conducted at a range of temperatures, and different filtration treatments, including unfiltered samples, were employed to understand the fraction of C most susceptible to photo-processing. UV irradiation and temperature had a significant effect on DOC and gas headspace concentrations, with Q10 values of ~1.42 and ~1.65 derived for CO2 and CO photoproduction in unfiltered samples, respectively. However, filtration treatment did not induce significant changes in gaseous C production between light and dark samples, indicating that the experimental conditions favoured breakdown of DOC rather than POC to CO2 and CO. In all light treatments a small but significant increase in CH4 concentration was detected. These data were compared to results from experiments conducted in ambient light and temperature conditions. DOC normalised CO2 photoproduction was an order of magnitude lower than in laboratory conditions, although relative abundances of C species within overall budgets were similar and these experiments demonstrated that ambient exposure is sufficient to generate photo-processing of aquatic peatland C. Overall these data show that peatland C, particularly the < 0.2 μm fraction, is highly photoreactive and that this process is temperature sensitive. Further laboratory irradiation experiments were conducted on filtered water samples collected over a 13-month period from two contrasting aquatic systems. The first was the headwater stream draining Auchencorth Moss peatland with high DOC concentrations. The second was a low DOC reservoir (Loch Katrine, C Scotland) situated in a catchment with a high percentage peat cover. Samples were collected monthly from May 2014 to May 2015 and from the stream system during two rainfall events. Significant variation was seen in the photochemical reactivity of DOC between the two systems, with total irradiation induced change typically two orders of magnitude greater and DOC normalised CO2 production a factor of two higher in the headwater stream samples. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. Overall the magnitude of photo-induced C losses was significantly positively correlated with DOC concentration in the headwater stream, which varied seasonally with highest concentrations detected in late autumn and winter. Rainfall events were identified as important in replenishing the stream system with photoreactive material, with lignin phenol data indicating mobilisation of fresh DOC from woody vegetation in the upper catchment during a winter rainfall event. Whilst these data clearly demonstrate that peatland catchments generate significant volumes of photoreactive DOC, the degree to which it is processed in the aquatic environment is unclear. Field investigations were undertaken to address this uncertainty. In-situ experiments with unfiltered water samples in light and dark conditions were conducted in two contrasting open water peatland pool systems. At the high DOC site (Red Moss of Balerno, SE Scotland), DOC concentrations in surface light exposed samples decreased by 18% compared to dark controls over 9 days and light treatments were enriched in CO2 and CH4. Photochemical processing was evident in δ13C-DOC and δ13C-DIC signatures of light exposed samples, which were enriched and depleted, respectively, relative to dark controls (+0.23 ‰ and -0.38 ‰) after 9 days of surface exposure. At the low DOC site (Cross Lochs, Forsinard, N Scotland) net production of DOC occurred in both light and dark samples over the experiment duration, in part due to POC breakdown. δ13C-DIC signatures indicated photolysis had occurred in light exposed samples (-1.98 ‰), whilst δ13C-DOC data suggest an absence of photo-processing, as the signatures in both treatments were similar. Accounting for light attenuation through the water column, 46 ± 4.9 and 8.7 ± 0.5 g C-CO2 eq m−2 yr−1 was processed by photochemical and microbial activity in peatland pools within the catchments at the high and low DOC sites, respectively. At both sites, light driven processing was responsible for a considerable percentage (34 and 51%) of gaseous C production when compared to equivalent estimates of microbial C processing and thus should be considered a key driver of peatland pool biogeochemical cycles. It is clear from this study that temperature, seasonal cycles, rainfall events and water residence time provide strong controls on the photoreactivity of aquatic C in Scottish peatland systems. The photo-processing pathway has the potential to alter the C balance of peatland catchments with a high percentage coverage of aquatic systems. Under climate change scenarios where light, temperature and rainfall conditions are expected to change, this process may become increasingly important in aquatic C cycling, particularly if the upward trend in DOC concentrations in northern aquatic systems continues.
38

Dissolved organic carbon (DOC) : Differences in reactivity amongst water sources to boreal streams in Sweden

Eriksson, Lukas January 2018 (has links)
The importance of dissolved organic carbon (DOC) to aquatic environments is well established in the scientific community. In boreal landscapes, small streams receive water from headwater lakes, mires, and discrete flow paths that drain riparian soils. The goal of this study was to investigate the importance of these discrete riparian inputs (DRIPs) as sources of DOC and to explore whether quantity and quality of DOC from DRIPs differs from other sources in the landscape, including groundwaters that are not as hydrologically connected to streams. To do this, I collected water from already established riparian groundwater wells installed at the Krycklan Catchment Study (KCS) in northern Sweden, as well as from an adjacent lake, stream, and mire. Microbial activity (respiration) was analyzed in 24-hour laboratory incubations using a metabolically active dye, resazurin (Raz) which in the presence of aerobic respiration transforms into resorufin (Rru). Rru is easily measured in the lab, and its production can serve as a proxy for rates of microbial respiration. DOC concentration was also measured at each location, along with specific absorbance at 254 nm (SUVA254) and the absorbance ratio (254/365 nm) as indices of DOC quality. The results show a large variation in DOC concentration among potential water sources to the stream. Furthermore, there was a strong correlation (R2=0.96) between Rru production and DOC concentration among these sources, but no significant difference (p=0.067) in median Rru production between DRIPs and non-DRIPs. Overall, these results highlight important spatial variability in DOC from different water sources in the landscape, which likely have important consequences for patterns of microbial respiration in streams.
39

Remoção de carbono orgânico dissolvido de águas de abastecimento por adsorção em carvão ativado granular / Dissolved organic carbon removal from source water by granular activated carbon

Teixeira, Marina Bergamaschi January 2014 (has links)
A crescente contaminação dos sistemas de água doce com milhares de compostos químicos naturais e industriais é um dos principais problemas ambientais enfrentados pela humanidade. Embora a maioria destes compostos esteja presente em baixas concentrações, muitos deles podem causar efeitos danosos à saúde. Adicionalmente ao aumento da poluição, com a descarga de fertilizantes, pesticidas, fármacos, detergentes, derivados de petróleo, entre outros, grande parte das instalações para tratamento de água no Brasil opera com sistema convencional, não atuando de forma eficiente na remoção desses microcontaminates. Carvão ativado em pó (CAP) e granular (CAG) tem sido utilizados em muitos países para remoção de microcontaminantes e substâncias que causam gosto e odor na água. No Brasil já foram desenvolvidas diversas pesquisas com o emprego de CAP para remoção de gosto e odor e alguns contaminantes específicos de águas de abastecimento. Neste trabalho foi testado um CAG produzido a partir de cascas de coco para remoção por adsorção de microcontaminates orgânicos de águas de abastecimento. A água utilizada nos experimentos foi coletada no ponto de captação da Estação de Tratamento de Água (ETA) Lomba do Sabão. Para a caracterização da capacidade adsortiva do carvão foram realizados seis ensaios de isotermas de adsorção e quatro ensaios em colunas de leito fixo, projetada com base na norma ASTM D 3922. Os microcontaminantes orgânicos foram quantificados pela concentração de carbono orgânico dissolvido (COD), medido em analisador de carbono orgânico e por absorbância em espectofotômetro em comprimento de onda de 254nm. Os resultados indicam que o carvão utilizado tem baixa capacidade de adsorver a mistura de microcontaminantes presentes na água de abastecimento, quantificados como COD. Isto se deve, provavelmente, a falta de afinidade entre muitos destes compostos e o carvão. / Pollution growth in water bodies brought by daily discharge of thousands of chemicals from anthropogenic sources is one of the main environmental issues confronting humankind. Although most of these chemicals are present in very low concentrations, they can still be hazardous.to health. Additionally to the increasing levels of pollution brought by discharges of fertilizers, pesticides, prescription drugs and pharmaceuticals, detergents, and petroleum derivatives, among others, the standard processes that are used in drinking water treatment plants in Brazil are not effective to remove these micropollutants. Powdered (PAC) and granular (GAC) activated carbon have been used in many countries to remove micropollutants and taste and odor-causing substances from water. In Brazil, research has been made using PAC to remove taste and odor substances and specific micropollutants from water. In this research, GAC produced from coconut shells was used to test the removal of organic micropollutants present in source water by adsorption. Water used in this research was collected at the intake of Lomba do Sabão drinking water treatment plant in Porto Alegre. In order to assess the GAC adsorption capacity, six isotherm (batch) and four column (continuous flow) assays were performed according to ASTM D 3922 standard. Organic micropollutants were quantified by the concentration of dissolved organic carbon (DOC) and by ultraviolet absorption at 254 nm wavelength. The results suggest that the tested GAC have limited capability in adsorb the complex mixture of micropollutants that are present in source water, as measured by DOC. This is probably caused by lack of affinity between many micropollutants present in the mixture and the carbon.
40

Copper and zinc speciation in the Tamar Estuary

Pearson, Holly Beverley Clare January 2017 (has links)
The chemical speciation of trace metals controls their potential bioavailability and therefore toxicity to exposed organisms. Despite previous studies demonstrating the ameliorative effects of dissolved organic carbon (DOC) on metal toxicity, the effectiveness of ligands from varying sources and of potentially variable composition in controlling speciation has not been studied in detail in estuarine waters. In addition, the effect of DOC on radionuclide contaminants in combination with trace metals has not been investigated in any waters. This is of particular interest in the estuarine environment, where both anthropogenic and natural ligands, and contaminants that pose a potential threat to ecosystem health, can be present. Competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV) with complexation capacity titrations was employed to determine the speciation of dissolved Cu and Zn, two metals that possess revised environmental quality standards (EQS) which now account for potential metal bioavailability. Dissolved metal concentrations in the < 0.4 and < 0.2 μm filter fractions of samples from the Tamar Estuary were determined during seasonal transects made over a calendar year. Samples were taken over a full salinity range (0-35) and from locations thought to contain DOC from a variety of sources (e.g. terrigenous, biogenic, sewage). No seasonal trends in metal speciation were identified, but a semi-quantitative assessment of DOC type using 3-D fluorimetry showed domination of humic and fulvic type ligands in the upper estuary, and biogenic-type ligands in the lower estuary, the former appearing the most important in controlling Cu and Zn complexation. Filter size fraction differences showed a major portion of the dissolved metal is associated with the 0.2 ≥ 0.4 μm fraction, indicating an importance of larger molecule ligands in controlling potentially bioavailable metal. Sample ligand concentrations ([L_x]) ranged from 1-372 nM (Cu) and 3-412 nM (Zn), and metal-ligand conditional stability constants (log K_(ML_x )) from 10.5-13.5 (Cu) and 7.5-10 (Zn), which are similar to reported literature. Calculated free metal ion concentrations ([M2+]) of 0.3 – 109 nM (Zn) and 1.4 x 10-13 – 7.3 x 10-11 M (Cu) compared well (92% showed no significant differences (P = 0.02)) with direct measurements of [Zn2+] made for the first time in estuarine waters using “Absence of Gradients and Nernst Equilibrium Stripping” (AGNES) after optimisation for estuarine waters. AGNES fully complements CLE-AdCSV in terms of analytical capability and shows that methods are now available that are capable of directly determining [Zn2+] in estuarine waters for use in environmental monitoring studies. Calculations made using the chemical equilibrium speciation programme Visual MINTEQ (VM) showed [Cu2+] and [Zn2+] could be predicted to within one order of magnitude of measured values when log K_(ML_x ) and [L_x] are determined and input into the model. This was in contrast to poor agreement between measured and predicted [M2+] when VM was used with the NICA-Donnan complexing model, which assumes a set portion of the total DOC concentration input is fulvic acid that actively complexes metals. These results corroborate a lack of identification of a relationship between metal speciation in the Tamar samples and DOC concentration, highlighting that knowledge of DOC type, log K_(ML_x )and L_x are important when assessing environmental risk, setting EQSs and for accurate modeling of [Cu2+]. Finally, a combined chemical and biological study investigating the effects of mixtures of DOC, Zn and the radionuclide tritium (3H) on the marine mussel presents the first evidence of a protective effect of Zn on DNA damage caused by 3H. The association of 3H with DOC remains elusive and an assessment of DOC type is recommended for future research, but the study emphasises the importance of investigating mixture effects in order to avoid inaccurate risk assessment and potentially costly site remediation.

Page generated in 0.109 seconds