• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 135
  • 33
  • 24
  • 24
  • 20
  • 20
  • 17
  • 15
  • 13
  • 12
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Karola Toth

Karola, Toth 12 1900 (has links)
ABSTRACT The effects of restoration on dissolved organic carbon (DOC) dynamics were examined at the Boi~-des-Bel peatland. This study included both laboratory measurements of DOC production by different peatland vegetative components and field measurements of DOC dynamics within a recently restored, a cutover and a natural peatland. Shrub and herbaceous plant material were found to be the most significant producers of DOC in the short term. Moss, peat and straw samples had a high potential to release DOC ;;ontinuously under warm, moist and aerobic conditions. On a short timescale, all components have the potential to release the three dissolved organic matter (DOM) fractions examined with humic acid (HA) most prominently being produced by shrubs and herbaceous plants and hydrophilic (HPI) and hydrophobic (HPO) fractions by mosses, peat and straw. Comparison of growing season results over three study years at the restored and cutover site indicated that DOC concentrations increased after restoration while DOC export decreased due to lowered runoff caused by the blockage of drainage ditches. Compared to the natural peatland, both the restored and the cutover site had a more humic DOM character. No difference could be found between the character of DOM released from the restored and cutover sites. The most active layer of DOM production was the top 75 em where the water iii table fluctuated during the season. Water storage units such as pools and ditches also play an important role in DOM export from the site. Spring snowmelt was found to be the most significant DOC export event of the study season in 2001, when export values were significantly larger than those measured during the growing season. Solubility of the different DOM fractions was the main controlling factor on the DOM character seen at the outflows. Storm events contributed significantly to the summer DOC output. DOC dynamics were affected by antecedent moisture conditions and differences emerged between the restored and cutover site during this period. The results of this study emphasize the importance of managing water table fluctuations and the restoration (reestablishment) of Sphagnum species in order to improve the retention of DOM within cutover peatlands. / Thesis / Master of Science (MS)
12

THE CONTROLS AND DRIVERS OF DISSOLVED ORGANIC CARBON QUANTITY AND DISSOLVED ORGANIC MATTER QUALITY IN AN IMPACTED GREAT LAKES WATERSHED

Singh, Supriya January 2019 (has links)
Intensely managed and modified catchments in the Great Lakes are linked to eutrophication and hypoxia of receiving water bodies downstream, resulting in water quality impairment, and adverse impacts on aquatic ecology. While much focus has been on the role of phosphorous and nitrogen, dissolved organic carbon (DOC) plays a complex and critical role in lake biogeochemical cycles, as it influences the interations between nutrients and contaminants in water and soil through processes of mobilization, transport, biological uptake, and deposition. Human-dominated landscapes have a range of consequences on DOC dynamics as catchment hydrology, plant cover, and nutrient inputs are altered in these environments. As such, the objectives of this study were to identify the controls and drivers of DOC quantity and DOM quality in the Spencer Creek watershed, which is the largest contributor of water to Cootes Paradise that ultimately drains into Lake Ontario. The 159 km2 study area of the catchment is complex, as the present landscape is composed of a mosaic of various land uses including agriculture, forest, wetland, urban, and industrial regions. Flow alterations contribute to the complexity of the watershed as there are managed reservoirs and alterations in water courses. From 2016- 2018, hydrometric data was collected across 9 monitoring sites, along with surface water samples that were analyzed for DOC concentration and optical properties. Results indicate differences in flow magnitudes and stream DOC between dry and wet conditions, where concentrations during wet conditions were significantly higher compared to dry. Additionally, there was substantial variation in DOC concentration and quality across the Spencer Creek watershed. DOC concentrations were found to be the lowest at groundwater influenced sites in the headwaters of the watershed, and the highest in the mid-catchment region where DOC quality was strongly influenced by wetland sources. The reservoir-influenced sites showed relatively intermediate concentrations of DOC, with quality that exhibited strong microbial signatures. At the outlet, DOC concentrations were attenuated and DOC quality was intermediate between allochthonous and autochthonous end members, reflecting upstream mixing processes. These processes were presented as a conceptual model of water and DOC movement through the Spencer Creek watershed. The implications of this research suggest that with anticipated wetter and warmer conditions DOC concentrations would increase in the watershed. The repercussions of increased DOC concentrations overall imply a decrease of terrestrial carbon storage, and greater input into more reactive and susceptible pools, which may result in further water quality degradation. Overall, the findings from this research provide insight into the fate and transport of water and DOC in a complex, managed catchment in the Great Lakes region, with the aims of providing key information for local stakeholders. / Thesis / Master of Science (MSc)
13

Flocculation of Allochthonous Dissolved Organic Matter – a Significant Pathway of Sedimentation and Carbon Burial in Lakes

von Wachenfeldt, Eddie January 2008 (has links)
Inland waters receive substantial amounts of organic carbon from adjacent watersheds. Only about half of the carbon exported from inland waters reaches the oceans, while the remainder is lost en route. This thesis identifies flocculation as an important and significant fate of carbon in the boreal landscape. Flocculation reallocates organic carbon from the dissolved state into particles which are prone to settle. Thus, flocculation relocates organic carbon from the water column to the sediment. The dissolved organic carbon (DOC), mainly originating from terrestrial sources, in a set of Swedish lakes was found to determine the extent of sedimentation of particulate organic carbon. A major fraction of the settling particles were of allochthonous origin. This implies that allochthonous DOC was the precursor of the settling matter in these lakes. The gross sedimentation was of the same magnitude as the evasion of carbon dioxide to the atmosphere. Sunlight, especially in the photosynthetically active region, stimulated flocculation of DOC. The effect of light appeared to involve a direct photochemical reaction. Iron was involved in the flocculation but it could not be unravelled whether the iron catalyzes the flocculation or just co-precipitates with the settling matter. Microbial activity was identified as the main regulator of the flocculation rates. Accordingly, alteration of temperature, oxygen concentration and pH did not affect flocculation only indirectly, via their effects on microbial metabolism. A comparison of fluorescence characteristics of organic matter collected in sediment trap and in the sediment surface layer revealed that autochthonous organic carbon was preferentially lost in the sediments while allochthonous matter increased. The recalcitrant nature of the flocculated matter could favour sequestration of this matter in the lake sediment. Hence, the lakes will act as sinks of organic carbon due to a slower mineralization of the flocculated matter in the sediments.
14

The effect of inorganic fertilizer application on compost and crop litter decomposition dynamics in sandy soil

Van der Ham, Ilana 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Inorganic fertilizer applications are common practice in commercial agriculture, yet not much is known regarding their interaction with organic matter and soil biota. Much research has been done on the effect of inorganic N on forest litter decomposition, yet very little research has focused on the effect of inorganic fertilizers on crop litters and, to our knowledge, none on composted organic matter. Furthermore none of the research has been done in South Africa. The main aim of this research project was to determine the effect of inorganic fertilizer applications on the decomposition of selected organic matter sources commonly used in South African agriculture and forestry. Two decomposition studies were conducted over a 3-month period, one on composts and the other on plant litters, using a local, sandy soil. In the first experiment a lower quality compost, compost A (C:N ratio, 17.67), and higher quality compost, compost B (C:N ratio, 4.92) was treated with three commercially used fertilizer treatments. Two were typical blends used for vegetable (tomato and cabbage) production: tomato fertilizer (10:2:15) (100 kg N, 20 kg P, 150 kg K per ha) and cabbage fertilizer (5:2:4) (250 kg N, 100 kg P, 200 kg K per ha). The third fertilizer blend, an equivalent mass application of N and P applied at 150 kg of each element per ha, is more commonly used in pastures. In the second experiment, five commonly encountered crop and forestry litters, namely kikuyu grass, lucerne residues, pine needles, sugar cane trash and wheat straw, were selected to represent the labile organic matter sources. The litters were treated with the tomato and cabbage fertilizer applications rates. Both decomposition experiments were conducted under ambient laboratory conditions at field water capacity. Decomposition rates were monitored by determining CO2 emissions, DOC production, β-glucosidase and polyphenol oxidase activity (PPO). At the start and end of decomposition study, loss on ignition was performed to assess the total loss of OM. Based on the results obtained from these two experiments, it was concluded that the addition of high N containing inorganic fertilizers enhanced the decomposition of both composted and labile organic matter. For both compost and plant litters, DOC production was greatly enhanced with the addition of inorganic fertilizers regardless of the organic matter quality. The conclusion can be made that inherent N in organic matter played a role in the response of decomposition to inorganic fertilizer application with organic matter low in inherent N showing greater responses in decomposition changes. For labile organic matter polyphenol and cellulose content also played a role in the responses observed from inorganic fertilizer applications. / AFRIKAANSE OPSOMMING: Anorganiese kunsmis toedieningss is algemene praktyk in die kommersiële landbou sektor,maar nog min is bekend oor hul interaksie met organiese materiaal en grond biota. Baie navorsing is reeds oor die uitwerking van anorganiese N op woud en plantasiereste se ontbinding gedoen. Baie min navorsing het gefokus op die uitwerking van anorganiese kunsmis op die gewasreste en tot ons kennis, is daar geen navorsing gedoen op die invloed van anorganiese kunsmis op gekomposteer organiese material nie. Verder is geeneen van die navorsing studies is in Suid-Afrika gedoen nie. Die hoofdoel van hierdie navorsingsprojek was om die effek van anorganiese kunsmis toedienings op die ontbinding van geselekteerde organiese materiaal bronne, wat algemeen gebruik word in die Suid-Afrikaanse landbou en bosbou, te bepaal. Twee ontbinding studies is gedoen oor 'n 3-maande-tydperk, een op kompos en die ander op die plantreste, met die gebruik van 'n plaaslike, sanderige grond. In die eerste eksperiment is ‘n laer gehalte kompos, kompos A (C: N verhouding, 17.67), en 'n hoër gehalte kompos, kompos B (C: N verhouding, 4.92) met drie kommersieel anorganiese bemesting behandelings behandel. Twee was tipiese versnitte gebruik vir die groente (tamatie en kool) produksie: tamatie kunsmis (10: 2:15) (100 kg N, 20 kg P, 150 kg K per ha) en kool kunsmis (5: 2: 4) (250 kg N, 100 kg P, 200 kg K per ha). Die derde kunsmis versnit was 'n ekwivalente massa toepassing van N en P van 150 kg van elke element per ha, wat meer algemeen gebruik word in weiding. In die tweede eksperiment was vyf algemeen gewas en bosbou reste, naamlik kikoejoegras, lusern reste, dennenaalde, suikerriet reste en koring strooi, gekies om die labiele organiese materiaal bronne te verteenwoordig. Die reste is met die tamatie en kool kunsmis toedienings behandel. Beide ontbinding eksperimente is uitgevoer onder normale laboratorium toestande by veldwaterkapasiteit. Ontbinding tempo is deur die bepaling van die CO2-vrystellings, opgelosde organiese koolstof (OOK) produksie, β-glukosidase en polifenol oksidase aktiwiteit (PPO) gemonitor. Aan die begin en einde van ontbinding studie, is verlies op ontbranding uitgevoer om die totale verlies van OM te evalueer. Gebaseer op die resultate van hierdie twee eksperimente, was die gevolgtrekking dat die toevoeging van hoë N bevattende anorganiese bemestingstowwe die ontbinding van beide komposte en plant reste verhoog. Vir beide kompos en plantreste word OOK produksie verhoog met die toevoeging van anorganiese bemesting, ongeag van die organiese materiaal gehalte. Die gevolgtrekking kan gemaak word dat die inherente N in organiese materiaal 'n rol gespeel het in die reaksie van ontbinding op anorganiese bemesting toedienings met die grootste reaksie in organiese material laag in inherente N. Vir labiele organiese material het polifenol en sellulose inhoud ook 'n rol gespeel in die reaksie waargeneeming op anorganiese bemesting.
15

Hydrological Controls on Mercury Mobility and Transport from a Forested Hillslope during Spring Snowmelt

Haynes, Kristine 20 November 2012 (has links)
Upland environments are important sources of mercury (Hg) to downstream wetlands and water bodies. Hydrology is instrumental in facilitating Hg transport within, and export from watersheds. Two complementary studies were conducted to assess the role hydrological processes play in controlling Hg mobility and transport in forested uplands. A field study compared runoff and Hg fluxes from three, replicate hillslope plots during two contrasting spring snowmelt periods, in terms of snowpack depth and timing. Hillslope Hg fluxes were predominately flow-driven. The melting of soil frost significantly delayed a large portion of the Hg flux later into the spring following a winter with minimal snow accumulation. A microcosm laboratory study using a stable Hg isotope tracer applied to intact soil cores investigated the relative controls of soil moisture and precipitation on Hg mobility. Both hydrologic factors control the mobility of contemporary Hg; with greatest Hg flushing from dry soils under high-flow conditions.
16

Thermokarst And Wildfire: Effects Of Disturbances Related To Climate Change On The Ecological Characteristics And Functions Of Arctic Headwater Streams

Larouche, Julia Rose 01 January 2015 (has links)
The Arctic is warming rapidly as a result of global climate change. Permafrost - permanently frozen ground - plays a critical role in shaping arctic ecosystems and stores nearly one half of the global soil organic matter. Therefore, disturbance of permafrost will likely impact the carbon and related biogeochemical processes on local and global scales. In the Alaskan Arctic, fire and thermokarst (permafrost thaw) have become more common and have been hypothesized to accelerate the hydrological export of inorganic nutrients and sediment, as well as biodegradable dissolved organic carbon (BDOC), which may alter ecosystem processes of impacted streams. The biogeochemical characteristics of two tundra streams were quantified several years after the development of gully thermokarst features. The observed responses in sediment and nutrient loading four years after gully formation were more subtle than expected, likely due to the stabilization of the features and the dynamics controlling the hydrologic connectivity between the gully and the stream. The response of impacted streams may depend on the presence of water tracks, particularly their location in reference to the thermokarst and downslope aquatic ecosystem. We found evidence of altered ecosystem structure (benthic standing stocks, algal biomass, and macroinvertebrate composition) and function (stream metabolism and nutrient uptake), which may be attributable to the previous years' allochthonous gully inputs. The patterns between the reference and impacted reaches were different for both stream sites. Rates of ecosystem production and respiration and benthic chlorophyll-a in the impacted reaches of the alluvial and peat-lined streams were significantly lower and greater, respectively, compared to the reference reaches, even though minimal differences in sediment and nutrient loading were detected. Rates of ammonium and soluble reactive phosphorus uptake were consistently lower in the impacted reach at the alluvial site. The observed differences in metabolism, nutrient uptake and macroinvertebrate community composition suggest that even though the geochemical signal diminished, gully features may have long-lasting impacts on the biological aspects of downstream ecosystem function. In a separate study, a suite of streams impacted by thermokarst and fire were sampled seasonally and spatially. Regional differences in water chemistry and BDOC were more significant than the influences of fire or thermokarst, likely due to differences in glacial age and elevation of the landscape. The streams of the older (>700 ka), lower elevation landscape contained higher concentrations of dissolved nitrogen and phosphorus and DOC and lower BDOC compared to the streams of the younger (50-200 ka) landscapes that had lower dissolved nutrient and DOC quantity of higher biodegradability. The findings in this dissertation indicate that arctic stream ecosystems are more resilient than we expected to small-scale, rapidly stabilizing gully thermokarst features and disturbance caused by fire. Scaling the results of these types of studies should consider the size of thermokarst features in relation to the size of impacted rivers and streams. It remains to be determined how general permafrost thaw will affect the structure and function of arctic streams in the future.
17

Bioavailability of organic contaminants in rivers

Onogbosele, Cyril Oziegbe January 2015 (has links)
In rivers, association of organic contaminants with dissolved organic carbon may limit freely dissolved or bioavailable fractions and toxicity of organic contaminants. Consequently, assessment of toxicity of organic contaminants on the basis of their total chemical concentrations may lead to overestimation of risks to organic contaminants. Therefore, to achieve reliable and accurate risks assessment for organic contaminants, determination of bioavailability is important. The influence of humic acid on the bioavailability of organic contaminants in rivers was studied, using three chemicals with different properties as model contaminants, which at the start of the study were detected in wastewater effluents. It was hypothesized that in the presence of dissolved organic carbon, a fraction of the total concentration of an organic contaminant would not be bioavailable in river water. Therefore, the aim of the study was to determine bioavailability and its impact on toxicity. Bioavailability in the presence of humic acid was determined chemically and using a yeast estrogen screen assay. The chemical method comprised solid-phase extraction and liquid chromatography-mass spectrometry to determine freely dissolved and the fraction of the chemicals associated with dissolved organic carbon. The results indicated increased binding to dissolved organic carbon with the hydrophobicity of the test compounds except for perfluorooctane sulfonate. The dissolved organic carbon-water partition coefficient for ethinylestradiol was determined to be Log KDOC 2.36. Log KDOC values of 4.15 and 4.41 at 10 and 100 mg/L humic acid, respectively, were derived for hexabromocyclododecane indicating greater binding than ethinylestradiol due to the more hydrophobic character. The yeast estrogen screen was used as a biological method to measure the effect of humic acid on the bioavailability of ethinylestradiol and a more hydrophobic compound, dichlorodiphenyltrichloroethane. Results of the yeast estrogen screen indicated that the presence of humic acid had no effect on bioavailability of either of the chemicals.
18

GLOBAL ASSESSMENT OF RADIOCARBON ISOTOPIC ANALYSIS FOR PARTICULATE AND DISSOLVED ORGANIC CARBON IN RIVERINE SYSTEMS

Tucker, Ashley 01 January 2014 (has links)
Rivers are a significant source of particulate and dissolved organic carbon (POC, DOC) into inland waters and coastal systems and provide a fundamental linkage between the terrestrial, oceanic, and atmospheric carbon reservoirs. Recent studies have examined the relationship between the quantity and form (POC vs. DOC) of carbon delivered to the aquatic system; however, little is known about the age of POC and DOC exported and how the radiocarbon age may vary with latitude, topographic gradient, vegetation, and land use. I provide the first global synthesis of published radiocarbon values of POC and DOC (∆14C). Inclusion of DOC and POC parameters (µM, δ13C, ∆14C) reveal significant driving forces of DOC (µM), latitude, and elevation (m) as capable of explaining 25% of the variability in DO14C in rivers and POC (µM) and latitude accounting for 15% of the variability in PO14C. When δ13C of DOC and POC and latitude were incorporated with ∆14C of DOC observations, 61% of the variability in DOC age was explained revealing the necessity to include dissolved and particulate fractions of organic carbon to yield the most robust predictive models. This study found a global trend of increasing age of DOC and increasing δ13C of DOC and POC with increasing latitude. My study suggests future research should incorporate both particulate and dissolved OC parameters along with elevation, vegetation, land cover, and climate zones to increase understanding of what drives the age of carbon exported in riverine systems.
19

Soil Aggregates: The mechanistic link to increased dissolved organic carbon in surface waters?

Cincotta, Malayika 01 January 2018 (has links)
Dissolved organic carbon (DOC) plays an important role in the global carbon (C) cycle because increases in aqueous C potentially contribute to rising atmospheric CO2 levels. Over the past few decades, headwater streams of the northern hemisphere have shown increased amounts of DOC coinciding with decreased acid deposition. Although the issue is widely discussed in the literature, a mechanistic link between precipitation composition and stream water DOC has not yet been proposed. In this study, the breakup of soil aggregates is hypothesized as the mechanistic link between reduced acid deposition and DOC increases in surface waters. Specific hypotheses state that soil aggregate dispersion (and the ensuing release of DOC from these aggregates) is driven by a decrease in soil solution ionic strength (IS, decreasing the tendency of flocculation) as well as a shift from divalent to monovalent cations (reducing the propensity for cation bridging) in soil solution. These hypotheses were tested on soil samples collected from several riparian zone and hillslope positions along three flagged transects in the acid-impacted Sleepers River Research Watershed in northeastern Vermont. To determine soil C content by landscape position, samples from transects spanning hilltop to hillslope and riparian area, as well as replicated hillslope and riparian samples (n=40) were analyzed. Aqueous soil extracts simulate the flushing of soils during hydrologic events (e.g. rain or snowmelt) and were used to test the effect of soil solution chemistry on DOC release. Extracts were prepared with solutions of varying IS (0-0.005M) and composition (CaCl2 and NaCl) on replicated soil samples (n=54) and changes in DOC release and aggregate size were monitored. As IS of the extraction solution increased, the amount of DOC in solution decreased, and aggregate size increased. This was presumably due to cations bridging and diffuse double layer effects. This effect was reversed in low ionic strength solutions where DOC release was significantly higher and average aggregate size was smaller. While extraction solution controlled the amount of C liberated, landscape position impacted the quality, but not quantity, of released DOC. This study is the first to propose a mechanistic link observed changes in DOC in surface waters and recovery from acidification and provides initial experimental evidence that soil aggregates indeed play a role in the generation of DOC.
20

Snowmelt flushing of dissolved organic carbon (DOC) from urban boreal streams : A study of stream chemistry in Degernäsbäcken and Röbäcken

Söderlund, Erik January 2019 (has links)
In boreal landscapes, large quantities of dissolved organic carbon (DOC) accumulated in soils are flushed into rivers and streams during snowmelt. These inputs supply energy to aquatic microbes, affect pH, and can promote the transportation of metals to streams and rivers. However, during the spring flood, changes in stream DOC are influenced by the structure of the catchment (e.g., forest vs. wetland cover), where different solutes are stored in soils, and snowmelt hydrology. While these mechanisms have been studied extensively in ‘pristine’ boreal landscapes, the influence of agricultural and urban land use on DOC flushing during snowmelt is poorly understood in this region. To understand these influences, I measured DOC, along with pH, conductivity, and discharge, during snowmelt at three boreal streams draining agricultural and urban lands.  I analyzed chemical patterns using discharge-concentration curves that reveal whether solutes are stable (chemostatic) or change (chemodynamic) during floods. Similar to observations made in forested catchments elsewhere, DOC was chemodynamic at all sites, increasing with discharge; however, two sites did show dilution at the very highest flows. pH declined with discharge at one site, but did not change at the other two. Electrical conductivity declined (was diluted) with increasing discharge for all sites, coinciding with previous studies. These results indicate that the majority of these chemical patterns in boreal streams influenced by agriculture and urban land use are chemodynamic, either increasing or decreasing in concentration with discharge during snowmelt. However more studies are needed to further clarify if patterns human-modified catchments are consistent with models based on boreal forested catchments.

Page generated in 0.0791 seconds