• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 215
  • 59
  • 29
  • 16
  • 11
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 700
  • 192
  • 93
  • 89
  • 79
  • 75
  • 63
  • 52
  • 52
  • 48
  • 47
  • 44
  • 43
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

A Novel Thermal Regenerative Electrochemical System for Energy Recovery from Waste Heat

Gray, David B 05 1900 (has links)
Waste-heat-to-power (WHP) recovers electrical power from exhaust heat emitted by industrial and commercial facilities. Waste heat is available in enormous quantities. The U.S. Department of Energy estimates 5-13 quadrillion BTUs/yr with a technical potential of 14.6 GW are available and could be utilized to generate power by converting the heat into electricity. The research proposed here will define a system that can economically recover energy from waste heat through a thermal regenerative electrochemical system. The primary motivation came from a patent and the research sponsored by the National Renewable Energy Laboratory (NREL). The proposed system improves on this patent in four major ways: by using air/oxygen, rather than hydrogen; by eliminating the cross diffusion of counter ions and using a dual membrane cell design; and by using high concentrations of electrolytes that have boiling points below water. Therefore, this system also works at difficult-to-recover low temperatures. Electrochemical power is estimated at 0.2W/cm2, and for a 4.2 M solution at 1 L/s, the power of a 100 kW system is 425 kW. Distillation energy costs are simulated and found to be 504 kJ/s for a 1 kg/s feed stream. The conversion efficiency is then calculated at 84%. The Carnot efficiency for a conservative 50% conversion efficiency is compared to the ideal Carnot efficiency. Preliminary work suggests an LCOE of 0.6¢/kWh. Industrial energy efficiency could be boosted by up to 10%. Potential markets include power stations, industrial plants, facilities at institutions like universities, geothermal conversion plants, and even thermal energy storage.
272

Produced Water Pretreatment Prior to Filtration with Forward Osmosis and Membrane Distillation Integrated System

Alqulayti, Abdullah 07 1900 (has links)
The simultaneous treatment of different produced water streams with the forward osmosis membrane distillation hybrid system (FO-MD) has been suggested recently. This work investigates the need for pretreatment of produced water prior to filtration with FO-MD in order to reduce the level of fouling and scaling in the system. The desalter effluent (DE) stream was selected as FO feed solution, and the water oil separator (WO) stream was used as FO draw solution/MD feed solution, and a significant flux decline was observed in FO and MD within the first 5 hours of operations. SEM and EDX analysis indicated that the formation of scale layer on both membranes was the main reason for the sharp flux decline. Silica was the major contributor to the scaling of the support layer of the FO membrane. While the scaling layer on MD membrane consisted mainly of CaSO4 crystals with some deposition of Silica. Therefore, electrocoagulation (EC) was selected for the pretreatment of produced water to target the removal of Ca, SiO2 and SO4 ions in order to reduce the likelihood of inorganic fouling in FO-MD. The different parameters of EC, namely, the current density, electrolysis time, and initial pH were tested at a wide range of values of 7-70 mA/cm2 , 10-60 minutes, 5-9, respectively. calcium and sulfate ions were not effectively removed at the relatively high applied current density of 70 mA/cm2 , while high removal of silica was achieved even at low applied current densities. The optimum conditions of EC for silica removal were found to be 7 mA/cm2 for the current density and 10 minutes for the electrolysis time which resulted in a 97% removal of silica. it was found that due to pretreatment, the average FO and MD fluxes increased by 49% (9.93 LMH) and 39% (8.55 LMH), respectively. Therefore, even though EC did not show promising results in terms of the removal of calcium and sulfate, efficient silica removal was achieved with minimum energy requirements which suggests that it could have a potential to be integrated with the FO-MD hybrid system for the treatment and reclamation of produced water.
273

IMPURITY CONTROL AND ANALYSIS OF ULTRA-PURE GALLIUM FOR INCREASING MOBILITY IN GALLIUM ARSENIDE GROWN BY MOLECULAR BEAM EPITAXY

Kyungjean Min (6635897) 14 May 2019 (has links)
<p></p><p>High mobility 2DEG (two-dimensional electron gas) confined in GaAs is a good platform to understand correlated electron systems and a promising candidate for qubit devices. For example, the non-Abelian feature of Fractional Quantum Hall state enabling topological quantum computation is only found in GaAs with high mobility. Theoretical calculations have shown that the mobility is inversely proportional to impurities in GaAs/AlGaAs heterstructures grown by Molecular Beam Epitaxy (MBE). In recent MBE experiments, the source Ga was found to be more important in the limitation of mobility than Al and As. A high mobility of 35 million cm<sup>2</sup>/Vs was recently observed when an 8N Ga (total nominal impurity concentration of ~10 ppb) source was used compared to 25 million cm<sup>2</sup>/Vs for a 7N Ga source. In addition, significant mobility increase was observed after in-situ distillation of the source Ga before growth. In order to clarify the mechanism of how the distillation contributed to the Ga purification, thus resulting in the mobility increase, the MBE in-situ distillation was analyzed by molecular distillation theory. Evaporation behavior of solvent Ga was analyzed including effects of evaporation from a crucible with receding liquid depth. Then impurity removal through molecular distillation was analyzed with molecular evaporation kinetics. The remaining 7N and 8N Ga after in-situ MBE distillation and growth were elementally analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and compared with analyses of the starting 7N and 8N Ga from same lots. Due to the increased detection limit of ICP-MS in metal analysis, the concentrations of most impurity elements reached the detection limit of ~1-10 ppb. However, unusual high concentration of 690 ppb Ge was found in the 7N Ga, exceeding the nominal concentration of 7N (100 ppb). Significant decrease in Ge concentration was found in the comparison of initial ultra-pure Ga and remaining Ga for both grades of 7N and 8N. The significant Ge losses cannot be explained by atomic Ge evaporation due to the low vapor pressure of Ge. However, a hypothesis of Ge evaporation as GeO(g) by Ge active oxidation was proposed. In order to test the active oxidation of very dilute Ge in Ga in the MBE conditions with very low P(O<sub>2</sub>), the equilibrium P(GeO)-P(O<sub>2</sub>) vapor species diagram was calculated from thermodynamics. The analysis shows that even very dilute Ge in Ga of ~ 1 ppm concentration can be <a>actively oxidized in the extremely low P(O<sub>2</sub>) of MBE</a>. In order to prove active oxidation of Ge, molecular distillation of 7N Ga was performed in <a>a specially constructed high vacuum chamber. The 7N Ga with unusual high Ge concentration of 440 ppb (by GDMS analysis) was distilled for 16 h at 1360 K under the starting P(O<sub>2</sub>) of 3 x 10<sup>-6</sup> torr and the total pressure of 10<sup>-5</sup> torr. The chamber vacuum was monitored by Residual Gas Analyzer (RGA) and the residual Ga after 16 h distillation was analyzed by GDMS. In the GDMS analysis, significant Ge loss was found from 440 ppb to below the detection limit of 10 ppb, confirming Ge active oxidation hypothesis. The oxygen-assisted impurity removal in distillation also may be applicable to other impurities with high vapor pressure gaseous oxide, but low vapor pressure itself, such as Al, Si and Sn. </a></p><br><p></p>
274

Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

Alsaery, Salim A. 05 1900 (has links)
With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature polarization coefficients (TPC). The turbulent module design showed higher TPC (0.5-0.58) than the laminar module (0.1-0.14) (i.e. a poor module design). This indicates that the effect of temperature polarization on the laminar flow was significant, which is below the reported TPC range of 0.4-0.70.
275

Systematic Structure Synthesis of Distillation-Based Separation Processes / 蒸留を基軸とした分離プロセスの系統的構造合成手法

Takase, Hiroshi 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21130号 / 工博第4494号 / 新制||工||1698(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 長谷部 伸治, 教授 大嶋 正裕, 教授 佐野 紀彰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
276

Alternatives to distillation: multi-membrane permeation and petrol pre-blending for bio-ethanol recovery

Stacey, Neil Thomas January 2016 (has links)
A thesis submitted for the degree of Doctor of Philosophy to The Department of Chemical and Metallurgical Engineering, Faculty of Engineering, University of the Witwatersrand, Johannesburg, 2016 / Separation of materials is crucial to the operation of the majority of chemical processes, not only for the purification of final products but also for the processing of feed-stocks prior to chemical reaction. The most commonplace method of materials separation is distillation which, unfortunately, is often an energy-intensive process and contributes significantly to mankind’s energy consumption and carbon dioxide emissions. Alternative approaches to separation are therefore a crucial element of the ongoing pursuit for sustainability in chemical industries. There are two principal ways of going about this. The first is to replace distillation units with alternative unit operations that can achieve the same separation with less energy expenditure. The second approach is overall flowsheet revision, fundamentally changing a separation cycle to minimize its energy requirements. The greatest improvements to energy efficiency will be achieved by applying both approaches in tandem. However, each must be developed separately to make that possible. This thesis lays the groundwork for radical revision of major separation operations by showcasing a new overall flowsheet for bioethanol separation that promises tremendous improvements in separation efficiency, reducing the energy usage involved in ethanol purification by as much as 40% in some scenarios. It also develops a novel method for the design of multi-membrane permeation units, showing how area ratio can be manipulated to fundamentally alter separation performance from such units, resulting in superior separation performance to conventional units, achieving higher recoveries than conventional setups. With membranes being an increasingly popular separation method, the potential for superior performance from multi-membrane units promises improvements in separation efficiency.
277

Batch separation of tetrafluoroethylene, hexafluoropropylene and octafluorocyclobutane

Conradie, Francois Jacobus 10 October 2012 (has links)
This dissertation details research aimed at designing a small batch distillation column to purify tetrafluoroethylene and hexafluoropropylene from a mixture containing tetrafluoroethylene, hexafluoropropylene and octafluorocyclobutane. As no vapour-liquid equilibrium data are available for these chemicals in this mixture, new vapour-liquid equilibrium data were experimentally generated and modelled for use in the design of the batch distillation column. The data were fitted to the Peng-Robinson equation of state, utilizing the Mathias-Copeman alpha function. The model was used with the Wong- Sandler mixing rules alongside the NRTL alpha function. The model was fitted with mean relative deviations lower than 1.2 %, indicating an acceptably accurate description of the VLE data gathered by the model. The experimental data and the model also passed the thermodynamic consistency test for all the systems and isotherms. The design simulations were completed by means of the Aspen Batch Distillation, a module of the Aspen Technologies package. The results show that the optimum design for recovering high-purity products requires six equilibrium stages in the column. The batch column should consist of a still pot, also functioning as a reboiler, a packed column section and a total condenser. The total condenser and the reboiler both count as equilibrium stages. Using this design, a TFE product purity of 99.999 % is predicted with a recovery of 96 %. An HFP product purity of 99 % is predicted at a recovery of 68 %. The recovery of the HFP product can be increased, but entails a significant loss of product purity. The minimum column diameter required to achieve the flow rates suggested in the simulation is 29 mm. The column diameter was selectedas 1¼ ″ (or 31.75 mm) on the basis of the standard pipe diameters available in the industry. Pall ring packing is suggested for use in the column, with an estimated maximum HETP of 0.5 m. As there are five equilibrium stages in the column itself, the column has to be at least 2.5 m high. Copyright / Dissertation (MEng)--University of Pretoria, 2011. / Chemical Engineering / unrestricted
278

Real textile wastewater treatment by membrane distillation and the effect of pretreatments to prevent wetting: A case study

Rodrigues, Mariana 04 1900 (has links)
The goal of this case study was to investigate the behavior of real textile wastewater in DCMD (Direct Contact Membrane Distillation) treatment and subsequently to develop a simple and effective pretreatment for it. To this moment, this work is one of the only studies to make an in-depth analysis of the treatment while considering the complexity of this effluent, which is inherently composed of Volatile Organic Compounds (VOCs) and surfactants. After the application of pretreatment, it became clear that the main concern with textile wastewater treatment using MD is wetting, not fouling. Sedimentation and filtration alone were effective in removing suspended solids, but insufficient in stopping wetting. However, neutralization before sedimentation and filtration was proven to be a fundamental step in reducing wetting rates. This improved performance happens due to the change in pH of the wastewater sample, which increases the rejection rates by the membrane. The best experiments, neutralized to pHs 7.40 and 9.06, achieved up to 99.89% rejection by the membrane, with up to 97% conductivity decrease when compared to an experiment without neutralization, 97% removal of COD, and 98% TOC. Overall, the permeate obtained in this work after pretreatment demonstrated excellent quality, and the recovered effluent can possibly be reused in the textile industry, aiming for Zero Liquid Discharge (ZLD) processes. Thus, scaling up this technology for real industrial use is still necessary, tailoring the treatment to the effluent's characteristics to obtain the best results.
279

Computer simulation of general systems of interlinked multistaged separators

Chan, Willie K. January 1982 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Chemical Engineering, 1982 / Bibliography: leaves 59-60. / by Willie K. Chan. / M.S. / M.S. Massachusetts Institute of Technology, Department of Chemical Engineering
280

Optimisation of design and operation policies of binary batch distillation with fixed product demand.

Miladi, M.M., Mujtaba, Iqbal M. January 2004 (has links)
No / Optimal design (vapour load, V and number of stages, N) and operation (reflux ratio, R and batch time, tb) of batch distillation have received significant attention in recent years. In these studies, it has been suggested that V should be set at some upper limit (thought to be optimum) and the optimisation task should be focused on finding the optimum values of N, R and tb, which would minimise the capital investment while maximising an economic objective function usually the profit (P). The major drawback of such optimisation strategy is that there is no constraint on the amount of product (on specification) being produced (NB = no. of batches in a given time) and the overall profit can only be maximised by producing unlimited amount of products. Unplanned and unlimited production of products are not sustainable and may lead to significant losses in the case of large inventory requirements of any excess products produced. In this work, for the first time, the optimal design and operation task for batch distillation is considered with due regards to the market demands (small to large number of batches) of the products being produced. An optimisation problem formulation is presented for the task which is different than those used in the past under unlimited product demand scenario. Simulated Annealing type algorithm is used for the solution of the optimisation problem. With several examples, it will be shown that fixing V a priori (say V < Vopt) will not allow production of NB batches of products with any combination of (N, R, tb) in a given production time. Also it will be shown that with V fixed at say V > Vopt, P will always be <Pmax for any combination of (N, R, tb). The comparisons between the results with and without fixing of V a priori show very clear improvement in the annual profit.

Page generated in 0.0938 seconds