• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo de mistura padrão com tempos de vida exponenciais ponderados

Gouveia, Bruno Pauka 05 March 2010 (has links)
Made available in DSpace on 2016-06-02T20:06:04Z (GMT). No. of bitstreams: 1 3137.pdf: 2333509 bytes, checksum: 17d0f072d443263a81b8c895dc712a3b (MD5) Previous issue date: 2010-03-05 / Financiadora de Estudos e Projetos / In this work, we brie_y introduce the concepts of long-term survival analysis. We dedicated ourselves exclusively to the standard mixture cure model from Boag (1949) and Berkson & Gage (1952), showing its deduction and presenting the imunes probability function, which is taken from the model itself and we investigated the identi_ability issues of the mixture model. Motivated by the possibility that a experiment design can lead to a biased sample selection, we studied the weighted probability distributions, more speci_cally the weighted exponential distributions family and its properties. We studied two distributions that belong to this family; namely, the length biased exponential distribution and the beta exponential distribution. Using the GAMLSS package in R, we made some simulation studies intending to evidence the bias that occur when the possibility of a weighted sample is ignored. / Neste trabalho apresentamos brevemente os conceitos que de_nem a análise de sobreviv ência de longa duração. Dedicamo-nos exclusivamente ao modelo de mistura padrão de Boag (1949) e Berkson & Gage (1952), sendo que nos preocupamos com sua formulação, apresentamos a função probabilidade de imunes, que é derivada do próprio modelo e investigamos a questão da identi_cabilidade. Motivados pela possibilidade de que um planejamento experimental leve a uma seleção viciada da amostra, estudamos as distribui ções ponderadas de probabilidade, mais especi_camente a família das distribuições exponenciais ponderadas e suas propriedades. Estudamos duas distribuições pertencentes a essa família, a distribuição exponencial length biased e a distribuição beta exponencial. Fazendo uso do pacote GAMLSS em R, realizamos alguns estudos de simulação com o intuito de evidenciar o erro cometido quando se ignora a possibilidade de que a amostra seja proveniente de uma distribuição ponderada.

Page generated in 0.0794 seconds