• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distribuições de probabilidade no intervalo unitário / Probability distributions in the unit interval

Lima, Francimário Alves de 16 March 2018 (has links)
A distribuição beta é a mais frequentemente utilizada para a modelagem de dados contínuos observados no intervalo unitário, como taxas e proporções. Embora seja flexível, admitindo formas variadas, tais como J, J invertido, U e unimodal, não é adequada em todas as situações práticas. Nesta dissertação fazemos uma revisão sobre distribuições contínuas no intervalo unitário englobando as distribuições beta, Kumaraswamy, simplex, gama unitária e beta retangular. Também abordamos uma ampla classe de distribuições obtida por transformações (Smithson e Merkle, 2013). Em particular, focamos em duas subclasses, uma apresentada e estudada por Lemonte e Bazán (2015), que chamaremos de classe de distribuições logito, e outra que chamaremos de classe de distribuições logito skew. Todas as distribuições consideradas são aplicadas a conjuntos de dados do Banco Mundial. / The beta distribution is the most frequently used for modeling continuous data observed in the unit interval, such as rates and proportions. Although flexible, assuming varied forms, such as J, inverted J, U and unimodal, it is not suitable in all practical situations. In this dissertation we make a review on continuous distributions in the unit interval encompassing the beta, Kumaraswamy, simplex, unit gamma and rectangular beta distributions. We also address a wide class of distributions obtained by transformations (Smithson and Merkle, 2013). In particular, we focus on two subclasses, one presented and studied by Lemonte and Bazán (2015), which we will call the logit class of distributions, and another that we will call the logit class of skew distributions. All distributions considered are applied to World Bank data sets.
2

Distribuições de probabilidade no intervalo unitário / Probability distributions in the unit interval

Francimário Alves de Lima 16 March 2018 (has links)
A distribuição beta é a mais frequentemente utilizada para a modelagem de dados contínuos observados no intervalo unitário, como taxas e proporções. Embora seja flexível, admitindo formas variadas, tais como J, J invertido, U e unimodal, não é adequada em todas as situações práticas. Nesta dissertação fazemos uma revisão sobre distribuições contínuas no intervalo unitário englobando as distribuições beta, Kumaraswamy, simplex, gama unitária e beta retangular. Também abordamos uma ampla classe de distribuições obtida por transformações (Smithson e Merkle, 2013). Em particular, focamos em duas subclasses, uma apresentada e estudada por Lemonte e Bazán (2015), que chamaremos de classe de distribuições logito, e outra que chamaremos de classe de distribuições logito skew. Todas as distribuições consideradas são aplicadas a conjuntos de dados do Banco Mundial. / The beta distribution is the most frequently used for modeling continuous data observed in the unit interval, such as rates and proportions. Although flexible, assuming varied forms, such as J, inverted J, U and unimodal, it is not suitable in all practical situations. In this dissertation we make a review on continuous distributions in the unit interval encompassing the beta, Kumaraswamy, simplex, unit gamma and rectangular beta distributions. We also address a wide class of distributions obtained by transformations (Smithson and Merkle, 2013). In particular, we focus on two subclasses, one presented and studied by Lemonte and Bazán (2015), which we will call the logit class of distributions, and another that we will call the logit class of skew distributions. All distributions considered are applied to World Bank data sets.
3

GARMA models, a new perspective using Bayesian methods and transformations / Modelos GARMA, uma nova perspectiva usando métodos Bayesianos e transformações

Andrade, Breno Silveira de 16 December 2016 (has links)
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). / Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.
4

GARMA models, a new perspective using Bayesian methods and transformations

Andrade, Breno Silveira de 16 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-08-03T20:04:27Z No. of bitstreams: 1 TeseBSA.pdf: 10322083 bytes, checksum: 4c30c490934f23dbad9d5a1f087ef182 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-08T19:09:23Z (GMT) No. of bitstreams: 1 TeseBSA.pdf: 10322083 bytes, checksum: 4c30c490934f23dbad9d5a1f087ef182 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-08T19:09:30Z (GMT) No. of bitstreams: 1 TeseBSA.pdf: 10322083 bytes, checksum: 4c30c490934f23dbad9d5a1f087ef182 (MD5) / Made available in DSpace on 2017-08-08T19:15:39Z (GMT). No. of bitstreams: 1 TeseBSA.pdf: 10322083 bytes, checksum: 4c30c490934f23dbad9d5a1f087ef182 (MD5) Previous issue date: 2016-12-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). / Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.
5

GARMA models, a new perspective using Bayesian methods and transformations / Modelos GARMA, uma nova perspectiva usando métodos Bayesianos e transformações

Breno Silveira de Andrade 16 December 2016 (has links)
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents the GARMA model with discrete distributions and application of resampling techniques to this class of models. We also proposed The Bayesian approach on GARMA models. The TGARMA (Transformed Generalized Autoregressive Moving Average) models was proposed, using the Box-Cox power transformation. Last but not least we proposed the Bayesian approach for the TGARMA (Transformed Generalized Autoregressive Moving Average). / Modelos Autoregressivos e de médias móveis generalizados (GARMA) são uma classe de modelos que foi desenvolvida para extender os conhecidos modelos ARMA com distribuição Gaussiana para um cenário de series temporais não Gaussianas. Este trabalho apresenta os modelos GARMA aplicados a distribuições discretas, e alguns métodos de reamostragem aplicados neste contexto. É proposto neste trabalho uma abordagem Bayesiana para os modelos GARMA. O trabalho da continuidade apresentando os modelos GARMA transformados, utilizando a transformação de Box-Cox. E por último porém não menos importante uma abordagem Bayesiana para os modelos GARMA transformados.

Page generated in 0.0548 seconds