• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 330
  • 190
  • 18
  • 10
  • 9
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 647
  • 647
  • 288
  • 282
  • 259
  • 226
  • 198
  • 160
  • 148
  • 141
  • 133
  • 124
  • 122
  • 117
  • 110
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contributions to converters in single phase distributed photovoltaic systems

Al-Omari, Ali Hussein Abduljabbar January 2018 (has links)
This thesis contributes to improve the photovoltaic Distributed Generation (DG) systems by proposing three novel methods to the system. On DC conversion side, a new integrated magnetic structure for interleaved converter and a new method to calculate the eddy current and hysteresis losses in the magnetic core were proposed. On inversion side, A new synchronisation method for grid tie inverters was suggested. The technique is using the Recursive Discrete Fourier Transform (RDFT) to find fundamental in grid waveform. On the DC converter side, the benefits of the new structure is to produce magnetic flux that alternate in the core across both directions of the BH curve. The advantages of alternating magnetic flux are, to increase the Root Mean Square (RMS) value of produced current with respect to core volume that lead to reduce the core size and reducing losses by using high permeability material. Furthermore, the proposed structure led to reduce the number of magnetic components which helped to improve the efficiency. The converter was tested and evaluated were the results show that the topology is able to produce high gain and it shows that the new interleaved structure is efficient. A new method to calculate the eddy current loss was proposed, where the flux waveform in the core was analysed to its original frequency component. Each of the components were utilized individually to find the loss. The effect of changing the duty cycle of the converter was taken into consideration on the total eddy current loss, as it will effect on the total harmonics content in the flux waveform. On the inverter side, due to recent developments combined with the increasing power demand by single phase non-linear loads where voltage spikes, harmonics and DC component were impacted the electric grid quality. These effects can likewise make the synchronisation process a challenge, where filters or Digital Signal processing (DSP) analysers are required to acquire the fundamental component as a consequence to the waveform deformation. A new linear approximation with RDFT is presented in this thesis for grid tie inverters. The new method provides a computation reduction as well as high accuracy in tracking the fundamental frequency in a distorted grid during synchronisation. The method accuracy was proved mathematically and simulated with different input signals. Error in magnitude and frequency measurement were measured, presented and compared with other research in order to verify the proposed method.
32

Enhanced voltage regulation in lightly-loaded, meshed distribution networks using a phase shifting transformer

27 May 2013 (has links)
M.Ing. (Electrical and Electronic Engineering) / Long transmission lines in power system require high line loading in order to lower voltage limits due to line losses. For relatively long lines, line charging is high and thus higher voltage limits reached at low loading. It follows then that it is a challenge to maintaining the voltages between the acceptable limits for relatively long lines. This dissertation highlights the problems experienced when load varying from very low to very high is supplied by very long parallel lines of different impedance characteristic. When the load is extremely high, there are low voltages experienced which are solved by use of shunt capacitors and/or adding more lines. When the load is extremely low, there are high voltages experienced which are solved by use of shunt reactors and/or switching some of the lines off. The type of solutions to this two loading extremes as indicated above, can be problematic, in that; new lines requires servitudes which can take too long, shunt capacitors and reactors in this type of the network is not desirable since the introduction of too many of these devices have maintenance implications and they would require continuous switching to maintain acceptable voltages, resulting in complicated operation of the network. This research proposes the use of a phase shifting transformer located on one of two parallel corridors supplying power to a load located remotely from the rest of the system. The transformer is able to rearrange the active power flows to vary loadings of the corridors and the improvements in voltage regulation can be realised during both low and high load conditions.
33

Residential Microgrids for Disaster Recovery Operations

Hurtt, James William 07 January 2013 (has links)
The need for a continuous supply of electric power is vital to providing the basic services of modern life. The energy infrastructure that the vast majority of the world depends on, while very reliable, is also very vulnerable. This infrastructure is particularly vulnerable to disruptions caused by natural disasters. Interruptions of electric service can bring an end to virtually all the basic services that people are dependent on. Recent natural disasters have highlighted the vulnerabilities of large, economically developed, regions to disruptions to their supply of electricity. The widespread devastation from the 2011 Japanese Tsunami and Hurricane Irene in North America, have demonstrated both the vulnerability of the contemporary power grids to long term interruption of service and also the potential of microgrids to ride through these interruptions. Microgrids can be used before, during, and after a major natural disaster to supply electricity, after the main grid source has been interrupted. This thesis researches the potential of clean energy microgrids for disaster recovery. Also a model of a proposed residential microgrid for transient analysis is developed. As the world demands more energy at increasingly higher levels of reliability, the role of microgrids is expected to grow aggressively to meet these new requirements. This thesis will look at one potential application for a microgrid in a residential community for the purpose of operating in an independent island mode operation. / Master of Science
34

Technical And Economic Impacts Of Distributed Generators And Energy Storage Devices On The Electric Grid

Kumar, Aarthi Asok 13 December 2008 (has links)
In recent years, Distributed Generators (DGs) and energy storage devices have gained more popularity due to growing energy and environmental concerns. Interconnection of DGs and storage devices in an electricity grid impacts its performance under steady state and transient conditions. This research aims at analyzing the impacts of distributed generators and energy storage devices on the transient stability of the grid. Battery and ultra-capacitor technologies have been taken as the two types of storage devices and their electrical characteristics have been modeled using Simulink. Impact of these devices has been analyzed by connecting them to the system by means of suitable power electronic converters. The developed methodology has been evaluated using small test systems in MATLAB/Simulink. Transient stability of the test systems has been assessed for different types and locations of faults as well as for different penetration levels of the DGs, with and without the energy storage devices. Impact on the system transient stability has been analyzed based on transient response of the generator rotor speed deviation, rotor angle and terminal voltage of the DGs. Finally, economic analyses have been carried out for different options of DGs, based on wind, diesel and biomass, along with the energy storage devices. Results indicate that the presence of DGs and storage devices enhances the transient stability of the system in most of the cases.
35

Microgrid Modeling, Planning and Operation

Su, Wencong 10 December 2009 (has links)
As distributed generations and renewable energy are becoming the fastest growing segment of the energy industry, the technical issues and environmental impacts have to be studied and understood. The large number of small-scale Microgrid components with their own characteristics is a big challenge for Microgrid modeling, simulation, planning and operation. The major goal of this thesis is to build a library of various Microgrid components. First of all, the thesis is going to present a detailed description of Microgrid models with moderate complexity. Next, it will present the modeling of loads, utility grid and transmission lines. Then, the paper will discuss the distributed generation models that have been developed in Matlab/Simulink including Diesel Engine, Fuel Cell, Micro Gas Turbine, Wind Turbine, Photovoltaic Cell, along with the detailed modeling of short-term storage (Battery, Pumped Hydro Storage, Flywheel, and Supercapacitor). In addition to steady-state study, the thesis will also discuss the hybrid sample systems that are built to investigate their transient responses. To enhance the simulation performance, some improvements on modeling and simulation will be introduced as well. To accommodate the high demand of renewable energy and the environment policy, the planning and operation the of Micro-source generators has been studied using HOMER. Simulation results show a case study of an optimal microgrid configuration on Ontario area in Canada. Sensitivity variables are specified to examine the effect of uncertainties, especially in a long-term planning. Also, demand side management plays an important role in the operation of Microgrid. Based on raw data, case studies are carried out to investigate and validate the demand response methods. Finally, the philosophy for Microgrid protection, especially Time-delay overcurrent protection, will be briefly introduced in both gird-connected and islanding modes. / Master of Science
36

Impact of Distributed Generation on Power Network Operation

Pregelj, Aleksandar 11 December 2003 (has links)
Tools and algorithms are proposed that are useful for planning, designing, and operating a distribution network with a significant penetration of distributed generation (DG). In Task 1, a PV system simulation program is developed, which incorporates the most rigorous models for the calculation of insolation, module temperature, and DC and AC power output of a PV system. The effect of random inverter failures is incorporated in the model of a PV system, and a novel performance-derating coefficient is introduced. Furthermore, a novel inverter control algorithm is presented for systems with multiple inverters. The algorithm is designed to increase overall DC/AC conversion efficiency by selectively shutting down some of the inverters during periods of low insolation, thus forcing the remaining inverters to operate at higher efficiency. In Task 2, a procedure is developed to incorporate the uncertainties imposed by stochastic, renewable DG into the conventional tools for analysis of distribution systems. A clustering algorithm is proposed to reduce large input data sets that result from the interaction of stochastic processes that drive DG output with field measurements of feeder load profiles. In addition, a procedure is proposed to determine the boundary points of the original data set, which yield feeder extreme operating conditions. Finally, a Monte Carlo analysis using a reduced data set is presented, to determine the effects of deploying a large number of renewable DG systems on a distribution feeder. In Task 3, the reliability model of an asymmetric, three--phase, non-radial distribution feeder equipped with capacity-constrained DGs is developed and used to quantify the potential reliability improvements due to the intentional islanded operation of parts of the feeder. A procedure for finding optimal positions for DG and protection devices is presented using a custom-tailored adaptive genetic algorithm.
37

Αξιολόγηση της προστασίας σε κατανεμημένη παραγωγή

Καψούρου, Ιζαμπέλα 06 September 2010 (has links)
Στην παρούσα διπλωματική εργασία θα ασχοληθούμε με την αξιολόγηση της προστασίας σε κατανεμημένη παραγωγή. Γενικά η κατανεμημένη παραγωγή, καλύπτει ένα μεγάλο εύρος νέων και παραδοσιακών τεχνολογιών με μικρές μονάδες εγκατεστημένες κοντά στην κατανάλωση και πιστεύεται ότι θα συμβάλει στην κάλυψη ενός μεγάλου μέρους της ενεργειακής ζήτησης στα επόμενα χρόνια με τη δυναμική της είσοδο στην απελευθερωμένη αγορά ενέργειας. Αρχικά γίνεται μια ανασκόπηση της υφιστάμενης παγκόσμιας ενεργειακής κατάστασης. Αναλύονται οι κυριότερες τεχνολογίες παραγωγής ηλεκτρικής ενέργειας και τα καύσιμα που χρησιμοποιούνται, τα οποία κατά συντριπτική πλειοψηφία βασίζονται στους ορυκτούς πόρους. Αποτυπώνεται αφενός, η συνολική συνεισφορά αυτών στην ενεργειακή ζήτηση, αφετέρου τα παγκόσμια αποθέματα αυτών. Στη συνέχεια παρουσιάζεται η υφιστάμενη κατάσταση στον ηλεκτρικό τομέα, οι αλλαγές που συνεπάγονται με τη απελευθέρωση της αγοράς ενέργειας, καθώς και το γενικό πλαίσιο και οι ρυθμίσεις που διέπουν τον τομέα της ενέργειας με βάση τα νέα δεδομένα. Γίνεται εισαγωγή και ορισμός της κατανεμημένης παραγωγής και αναλύονται τα βασικά χαρακτηριστικά που συνθέτουν την έννοια αυτής καθώς επίσης γίνεται μια παρουσίαση των κυριότερων τεχνολογιών που ολοκληρώνουν τη κατανεμημένη παραγωγή. Στη συνέχεια ασχολούμαστε με το φαινόμενο της νησιδοποίησης. Η αύξηση της παραγωγής ισχύος από διανεμημένους παραγωγούς καθιστά την εμφάνιση του φαινομένου όλο και συχνότερη. Η ανίχνευση και διακοπή του φαινομένου είναι καθοριστικής σημασίας για την ορθή λειτουργία του Δικτύου και την ασφάλεια του προσωπικού που εργάζεται σε αυτό. Εδώ περιγράφουμε μερικές από τις πιο βασικές εφαρμοζόμενες μεθόδους ανίχνευσης και διακοπής του. Ύστερα παρουσιάζουμε τα βασικά χαρακτηριστικά των μέσων προστασίας έναντι υπερεντάσεων. Προχωράμε σε μελέτη των διατάξεων προστασίας ενός παραδείγματος μιας εγκατάστασης φωτοβολταϊκών με σκοπό τη διασφάλιση της σε περίπτωση εμφάνισης σφαλμάτων. Τέλος αναφερόμαστε σε κάποιες νέες προσεγγίσεις και μελλοντικές τάσεις και προοπτικές για τον καθορισμό των τρόπων ενσωμάτωσης ομαλών τεχνολογιών ΚΠ και τη ρύθμιση θεμάτων σχετικά με τη διασύνδεση και τη λειτουργία τους. / In this work we will do a research about the appraisal of the distributed generation .All in all the distributed generation encloses a great range of new and traditional technologies. Some of them are installed close to the consumption and it is believed that the distributed generation will contribute to cover a great part of the energy demand in the next years. In the beginning we refer to the global energy situation. We analyze the most important technologies of distributed generation and the fuels that are used which are based on the mineral resources. These fuels contribute in the energy demand and we also refer to the global store of fuel. We present the situation of the electric section today, the changes and the regulations that happen in this section day by day. What is more, it is given the meaning of the “distributed generation”, we analyze the basic characteristics of it and we present the most important technologies that complete the distributed generation. Furthermore we refer to the problem of islanding. Because of the fact that the power production is increasing lately, the problem is appeared more and more often. We must look for this phenomenon and stop it immediately in order the network work correctly and the persons who work in this part of network be safe. We describe some of the most important methods of “tracking” the islanding and stopping it. Afterwards we present the basic characteristics of the protection arrangement that we must use in case of errors and short circuits. We continue presenting an instance for a photovoltaic system installation and what sort of protection must be used in order this system to work with safe when errors happen. In the end we refer to what must be done in the future so that the technologies of distributed generation be used more and more often and much more efficiently.
38

Modeling a distributed energy system for California electricity production through 2050

Azad, Vikas 01 January 2012 (has links)
Recent research shows that combining distributed generation (DG) with renewable resources will reduce fossil fuel dependency and carbon dioxide (C02) emissions. This thesis presents a framework to evaluate the benefits of DG in terms of C02 emission and transmission line losses with respect to the use of centralized power production through 2050. Due to availability of complete data, Sacramento Municipal Utility District (SMUD) in California is the main focus of this thesis; however other utility companies such as PG&E, SDG&E and SCE are also discussed. The test results based on SMUD show a decrease of about 11% to 4% in line losses when a 500 MW DG is placed at the consumption site. This thesis also shows that by adding a 40 MW DG at the central location, C02 can be reduced by 71% when compared to current standard business practices. By adding 40 MW DG every year near consumers, SMUD can eliminate inhouse electricity generation thus completely eliminating C02 emissions by 2034.
39

Optimal Placement of Distributed Generation on a Power System Using Particle Swarm Optimization

Cherry, Derrick Dewayne 12 May 2012 (has links)
In recent years, the power industry has experienced significant changes on the distribution power system primarily due to the implementation of smart-grid technology and the incremental implementation of distributed generation. Distributed Generation (DG) is simply defined as the decentralization of power plants by placing smaller generating units closer to the point of consumption, traditionally ten mega-watts or smaller. While DG is not a new concept, DG is gaining widespread interest primarily for the following reasons: increase in customer demand, advancements in technology, economics, deregulation, environmental and national security concerns. The distribution power system traditionally has been designed for radial power flow, but with the introduction of DG, the power flow becomes bidirectional. As a result, conventional power analysis tools and techniques are not able to properly assess the impact of DG on the electrical system. The presence of DG on the distribution system creates an array of potential problems related to safety, stability, reliability and security of the electrical system. Distributed generation on a power system affects the voltages, power flow, short circuit currents, losses and other power system analysis results. Whether the impact of the DG is positive or negative on the system will depend primarily on the location and size of the DG. The objective of this research is to develop indices and an effective technique to evaluate the impact of distributed generation on a distribution power system and to employ the particle swarm optimization technique to determine the optimal placement and size of the DG unit with an emphasis on improving system reliability while minimizing the following system parameters: power losses, voltage deviation and fault current contributions. This research utilizes the following programs to help solve the optimal DG placement problem: Distribution System Simulator (DSS) and MATLAB. The developed indices and PSO technique successfully solved the optimal DG sizing and placement problem for the I 13-Node, 34-Node and 123-Node Test Cases. The multi-objective index proved to be computational efficient and accurately evaluated the impact of distributed generation on the power system. The results provided valuable information about the system response to single and multiple DG units.
40

Streamlined interconnection analysis of distributed PV using advanced simulation methods

Reno, Matthew J. 27 May 2016 (has links)
With the penetration of PV on the distribution system continually increasing, new advanced simulation methods are necessary to model the potential technical impacts of PV to the equipment and operation of the distribution system. With distributed PV, a timeseries analysis approach is necessary to more fully capture the time-varying nature of solar energy and the interaction with distribution system operations. The objective of the research is to streamline the PV interconnection process by providing more accurate methods that require less time for both the PV interconnection screening criteria and the PV interconnection impact study process. To improve the computational speed of timeseries simulations, an equivalent circuit reduction method is developed to simplify the circuit to a reduced-order model. The reduced circuit is equivalent during timeseries simulations, but it solves in a fraction of the time. The algorithm works with unbalanced multi-phase complex distribution system models, and it is shown to have high accuracy when validated against the full feeder models. An advanced PV hosting capacity simulation tool is developed and used to quantify system impacts for many PV interconnection scenarios, configurations, and locations, which can be generalized to develop improved future interconnection screening criteria. The advanced tools quantify location-specific impacts and the locational hosting capacity of potential PV interconnection locations on the feeder, including PV impact signatures and zones. A set of 50 different real distribution systems is analyzed in detail to demonstrate the range of scenarios and impacts that can occur depending on the feeder characteristics and topology. Specific methods are developed for time-series analysis, faster simulation times, distribution system equivalent circuit reduction, and PV hosting capacity analysis. The advancements presented in this thesis assist in streamlining PV interconnection studies with faster interconnection analysis times and more accurate screening criteria.

Page generated in 0.1634 seconds