• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Electric Propulsion Conceptual Design Applied to Traditional Aircraft Take Off Distance Through Multidisciplinary Design

Moore, Kevin Ray 23 November 2018 (has links)
While vertical takeoff and landing aircraft show promise for urban air transport, distributed electric propulsion on existing aircraft may offer an immediately implementable alternative. Dis- tributed electric propulsion has the potential of increasing the aircraft thrust-to-weight ratio and lift coefficient high enough to enable takeoff distances of less than 100 meters. While fuel based propulsion technologies generally increase in specific power with increasing size, electric propul- sion typically can be decreased in size without a decrease in specific power. The smaller but highly power-dense propulsion units enable alternative designs including many small units, optionally powered units, and vectored thrust from the propulsion units, which can all contribute to better runway performance, decreased noise, adequate cruise speed, and adequate range. This concep- tual study explores a retrofit of continuously powered, invariant along the wingspan, open bladed electric propulsion units. To model and explore the design space we used a set of validated models including a blade element momentum method, a vortex lattice method, linear beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, mo- tor mass and motor controller empirical mass models, and nonlinear gradient-based optimization. We found that while satisfying aerodynamic, aerostructural, noise, and system constraints, a fully blown wing with 16 propellers could reduce the takeoff distance by over 50% when compared to the optimal 2 propeller case. This resulted in a conceptual minimum takeoff distance of 20.5 meters to clear a 50 ft (15.24 m) obstacle. We also found that when decreasing the allowable noise to 60 dBa, the fully blown 8 propeller case performed the best with a 43% reduction in takeoff distance compared to the optimal 2 propeller case. This resulted in a noise-restricted conceptual minimum takeoff distance of 95 meters.Takeoff distances of this length could open up thousands of potential urban runway locations to make a retrofit distributed electric aircraft an immediately implementable solution to the urban air transport challenge.
2

Advances in Aero-Propulsive Modeling for Fixed-Wing and eVTOL Aircraft Using Experimental Data

Simmons, Benjamin Mason 09 July 2023 (has links)
Small unmanned aircraft and electric vertical takeoff and landing (eVTOL) aircraft have recently emerged as vehicles able to perform new missions and stimulate future air transportation methods. This dissertation presents several system identification research advancements for these modern aircraft configurations enabling accurate mathematical model development for flight dynamics simulations based on wind-tunnel and flight-test data. The first part of the dissertation focuses on advances in flight-test system identification methods using small, fixed-wing, remotely-piloted, electric, propeller-driven aircraft. A generalized approach for flight dynamics model development for small fixed-wing aircraft from flight data is described and is followed by presentation of novel flight-test system identification applications, including: aero-propulsive model development for propeller aircraft and nonlinear dynamic model identification without mass properties. The second part of the dissertation builds on established fixed-wing and rotary-wing aircraft system identification methods to develop modeling strategies for transitioning, distributed propulsion, eVTOL aircraft. Novel wind-tunnel experiment designs and aero-propulsive modeling approaches are developed using a subscale, tandem tilt-wing, eVTOL aircraft, leveraging design of experiments and response surface methodology techniques. Additionally, a method applying orthogonal phase-optimized multisine input excitations to aircraft control effectors in wind-tunnel testing is developed to improve test efficiency and identified model utility. Finally, the culmination of this dissertation is synthesis of the techniques described throughout the document to form a flight-test system identification approach for eVTOL aircraft that is demonstrated using a high-fidelity flight dynamics simulation. The research findings highlighted throughout the dissertation constitute substantial progress in efficient empirical aircraft modeling strategies that are applicable to many current and future aeronautical vehicles enabling accurate flight simulation development, which can subsequently be used to foster advancement in many other pertinent technology areas. / Doctor of Philosophy / Small, electric-powered airplanes flown without an onboard pilot, as well as novel electric aircraft configurations with many propellers that operate at a wide range of speeds, referred to as electric vertical takeoff and landing (eVTOL) aircraft, have recently emerged as aeronautical vehicles able to perform new tasks for future airborne transportation methods. This dissertation presents several mathematical modeling research advancements for these modern aircraft that foster accurate description and prediction of their motion in flight. The mathematical models are developed from data collected in wind-tunnel tests that force air over a vehicle to simulate the aerodynamic forces in flight, as well as from data collected while flying the aircraft. The first part of the dissertation focuses on advances in mathematical modeling approaches using flight data collected from small traditional airplane configurations that are controlled by a pilot operating the vehicle from the ground. A generalized approach for mathematical model development for small airplanes from flight data is described and is followed by presentation of novel modeling applications, including: characterization of the coupled airframe and propulsion aerodynamics and model development when vehicle mass properties are not known. The second part of the dissertation builds on established airplane, helicopter, and multirotor mathematical modeling methods to develop strategies for characterization of the flight motion of eVTOL aircraft. Innovative data collection and modeling approaches using wind-tunnel testing are developed and applied to a subscale eVTOL aircraft with two tilting wings. Statistically rigorous experimentation strategies are employed to allow the effects of many individual controls and their interactions to be simultaneously distinguished while also allowing expeditious test execution and enhancement of the mathematical model prediction capability. Finally, techniques highlighted throughout the dissertation are combined to form a mathematical modeling approach for eVTOL aircraft using flight data, which is demonstrated using a realistic flight simulation. The research findings described throughout the dissertation constitute substantial progress in efficient aircraft modeling strategies that are applicable to many current and future vehicles enabling accurate flight simulator development, which can subsequently be used for many research applications.
3

On the Analysis and Design of Series Hybrid Distributed Electric Propulsion with Boundary Layer Ingestion of Remotely Piloted Aircraft

Varela Martínez, Pau 18 April 2023 (has links)
[ES] En el presente trabajo se explora posibles soluciones a dos hechos correlacionados que podrían comprometer hasta cierto punto nuestro futuro. Por un lado, el crecimiento de la flota de aeronaves pequeñas en los próximos años, ya sean tripuladas o no, es una realidad. El acceso a estas aeronaves por parte de un público cada vez más mayoritario crece año a año y, al mismo tiempo, los fabricantes adaptan sus aeronaves a misiones que hace unos años no éramos capaces de contemplar. Por otro lado, y por desgracia, el cambio climático también es una realidad que no solo compromete nuestro futuro, sino también nuestro presente. Hoy en día la alerta climática es y debe ser elevada, y si no encontramos soluciones que ayuden a paliar este problema, la vida en el planeta podría cambiar irremediablemente para peor. Ambos hechos se encuentran implícitamente relacionados. La fabricación y operación de vehículos contribuye notablemente a aumentar la huella de carbono. Por lo tanto, el aumento de flota en los próximos años puede tener un impacto notablemente negativo en las emisiones contaminantes y gases de efecto invernadero globales. Es por ello por lo que organismos oficiales y sectores de desarrollo científico y tecnológico impulsan la investigación de posibles soluciones. Este trabajo intenta poner su grano de arena para minimizar este problema común. Se propone la utilización de múltiples tecnologías con el objetivo de disminuir el combustible requerido por aeronaves de 25kg al despegue, y de esta forma, disminuir las emisiones asociadas a su operación. Las tecnologías aplicadas son la hibridación eléctrica en serie, la propulsión eléctrica distribuida y la ingestión de capa límite. Por separado, estas tecnologías han demostrado múltiples ventajas, especialmente en términos de mejora propulsiva y aerodinámica de las aeronaves, lo que repercute directamente en el consumo de combustible. Sin embargo, este trabajo propone la utilización simultánea de todas ellas con el objetivo de disminuir aún más el consumo de combustible y, por tanto, las emisiones contaminantes y gases de efecto invernadero. Para ello, tras estas páginas se eligen los parámetros principales de esta aeronave y se acompaña de un exhaustivo análisis del comportamiento fluidodinámico. Con la comprensión de su comportamiento, es posible optimizar la selección de sus componentes, de forma que se obtienen mejoras importantes en el consumo de combustible. Este ahorro de combustible se muestra en comparación con aeronaves similares en tamaño y peso, pero que no incluyen estas tecnologías, logrando para un mismo alcance un ahorro del 16% del peso del combustible. La realización de este trabajo se centra en el empleo de herramientas computacionales apoyándose sobre todo en la dinámica de fluidos computacional (CFD). Esta herramienta principal se verá complementada con el uso de descomposición modal para realizar los análisis y de la creación de una base de datos que ayude a crear modelos rápidos útiles en futuros diseños preliminares y conceptuales de aeronaves de este tipo. / [CA] En aquest treball s'exploren possibles solucions a dos fets correlacionats que podrien comprometre d'alguna manera el nostre futur. Per un costat, el creixement de la flota d'aeronaus de xicoteta dimensió en el futur, tant tripulades com no tripulades, és una realitat. L'accés a aquestes aeronaus per part d'un públic cada cop més majoritari creix any rere any i, al mateix temps, els fabricants adapten les aeronaus a feines que anys enrere no eren capaços d'assolir. Per l'altre costat, malauradament, el canvi climàtic és un fet que compromet tant el nostre futur com el nostre present. Hui en dia l'alerta climàtica és elevada i, si no trobem solucions per a pal·liar aquest problema la vida al nostre planeta, podria canviar irremeiablement a pitjor. Ambdós fets es troben implícitament relacionats. La fabricació i l'operació de vehicles contribueix notablement a augmentar l'empremta de carboni. Per tant, l'increment de flota en els pròxims anys pot tindre un efecte negatiu molt notable en les emissions contaminants i gasos d'efecte hivernacle globals. És per això que organismes oficials i sectors de desenvolupament científic i tecnològic impulsen la investigació de possibles solucions. Aquest treball intenta aportar el seu granet de sorra per minimitzar aquest problema comú. Es proposa la utilització de múltiples tecnologies amb l'objectiu de reduir el combustible emprat per aeronaus de fins a 25kg i, per tant, disminuir les emissions associades a la seua operació. Les tecnologies aplicades són la hibridació elèctrica en sèrie, la propulsió elèctrica distribuïda i la ingestió de capa límit. Separadament, aquestes tecnologies han demostrat múltiples avantatges, especialment en termes de millora propulsiva i aerodinàmica de les aeronaus, repercutint directament en el consum de combustible. No obstant, aquest treball proposa la utilització simultània de totes elles amb l'objectiu de reduir encara més el consum de combustible i, per tant, les emissions contaminants i gasos d'efecte hivernacle. Per fer-ho, en les darreres pàgines es trien els paràmetres principals de l'aeronau i s'acompanyen d'una exhaustiva anàlisi del comportament de la dinàmica de fluids. Comprenent el seu comportament, és possible optimitzar la selecció dels seus components, de manera que s'obtenen millores importants en el consum de combustible. L'estalvi de combustible es mostra en comparació amb aeronaus similars en mida i pes, però que no inclouen aquestes tecnologies, aconseguint per a un mínim abast un estalvi del 16% del pes del combustible. La realització d'aquest treball es centra en l'ús d'eines computacionals recolzant-se sobretot en la dinàmica de fluids computacional (CFD). Aquesta eina principal es veurà complementada amb l'ús de descomposició modal per a elaborar les anàlisis i de la creació d'una base de dades que ajude a crear models ràpids i útils en futurs dissenys conceptuals i preliminars d'aeronaus d'aquest tipus. / [EN] The present work explores possible solutions to two correlated events that could compromise our future to some extent. On the one hand, the growth of the fleet of small aircraft in the coming years, whether manned or not, is a reality. Access to these aircraft by an increasing majority of the public grows year after year and at the same time, manufacturers adapt their aircraft to missions that we could not contemplate a few years ago. On the other hand, and unfortunately, climate change is also a reality that compromises not only our future but also our present. Today the climate alert is and must be elevated. If we do not find solutions that help alleviate this problem, life on the planet could irremediably change for the worse. Both facts are implicitly related. The manufacture and operation of vehicles contribute significantly to increasing the carbon footprint, so the increase in the fleet in the coming years may have an extremely negative impact on global polluting and greenhouse gas emissions. That is why official organizations and scientific and technological development sectors promote research for possible solutions. This work tries to do its bit to minimize this common problem. Multiple technologies are proposed to reduce the fuel required by 25kg aircraft at takeoff and, thus, reduce the emissions associated with their operation. The applied technologies are electric series hybridization, distributed electric propulsion, and boundary layer ingestion. Separately, these technologies have shown multiple advantages, especially in terms of improving aircraft propulsion and aerodynamics, which directly affects fuel consumption. Nevertheless, this work proposes the simultaneous use of all of them to reduce fuel consumption further and, therefore, polluting and greenhouse gas emissions. To do this, after these pages, the main parameters of this aircraft are chosen and accompanied by an exhaustive analysis of the fluid dynamic behavior. With an understanding of its behavior, it is possible to optimize its components' selection so that significant fuel consumption improvements are obtained. This fuel saving is shown in comparison with similar aircraft in size and weight, but that does not include these technologies, achieving a saving of 16% of fuel weight for the same range. This work's conduction focuses on employing computational tools mainly based on computational fluid dynamics (CFD). This primary tool will be complemented by the use of modal decomposition to carry out the analyses, and the creation of a database that will help create quick models useful in future conceptual and preliminary designs of this type of aircraft. / The respondent would like to acknowledge the financial support received through contract FPI-UPV PREDOCFD/19 of Subprograma 2 of Universitat Politècnica de València / Varela Martínez, P. (2023). On the Analysis and Design of Series Hybrid Distributed Electric Propulsion with Boundary Layer Ingestion of Remotely Piloted Aircraft [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192805

Page generated in 0.0974 seconds