• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contribution de la Théorie des Valeurs Extrêmes à la gestion et à la santé des systèmes / Contribution of extreme value theory to systems management and health

Diamoutene, Abdoulaye 26 November 2018 (has links)
Le fonctionnement d'un système, de façon générale, peut être affecté par un incident imprévu. Lorsque cet incident a de lourdes conséquences tant sur l'intégrité du système que sur la qualité de ses produits, on dit alors qu'il se situe dans le cadre des événements dits extrêmes. Ainsi, de plus en plus les chercheurs portent un intérêt particulier à la modélisation des événements extrêmes pour diverses études telles que la fiabilité des systèmes et la prédiction des différents risques pouvant entraver le bon fonctionnement d'un système en général. C'est dans cette optique que s'inscrit la présente thèse. Nous utilisons la Théorie des Valeurs Extrêmes (TVE) et les statistiques d'ordre extrême comme outil d'aide à la décision dans la modélisation et la gestion des risques dans l'usinage et l'aviation. Plus précisément, nous modélisons la surface de rugosité de pièces usinées et la fiabilité de l'outil de coupe associé par les statistiques d'ordre extrême. Nous avons aussi fait une modélisation à l'aide de l'approche dite du "Peaks-Over Threshold, POT" permettant de faire des prédictions sur les éventuelles victimes dans l'Aviation Générale Américaine (AGA) à la suite d'accidents extrêmes. Par ailleurs, la modélisation des systèmes soumis à des facteurs d'environnement ou covariables passent le plus souvent par les modèles à risque proportionnel basés sur la fonction de risque. Dans les modèles à risque proportionnel, la fonction de risque de base est généralement de type Weibull, qui est une fonction monotone; l'analyse du fonctionnement de certains systèmes comme l'outil de coupe dans l'industrie a montré qu'un système peut avoir un mauvais fonctionnement sur une phase et s'améliorer sur la phase suivante. De ce fait, des modifications ont été apportées à la distribution de Weibull afin d'avoir des fonctions de risque de base non monotones, plus particulièrement les fonctions de risque croissantes puis décroissantes. En dépit de ces modifications, la prise en compte des conditions d'opérations extrêmes et la surestimation des risques s'avèrent problématiques. Nous avons donc, à partir de la loi standard de Gumbel, proposé une fonction de risque de base croissante puis décroissante permettant de prendre en compte les conditions extrêmes d'opérations, puis établi les preuves mathématiques y afférant. En outre, un exemple d'application dans le domaine de l'industrie a été proposé. Cette thèse est divisée en quatre chapitres auxquels s'ajoutent une introduction et une conclusion générales. Dans le premier chapitre, nous rappelons quelques notions de base sur la théorie des valeurs extrêmes. Le deuxième chapitre s'intéresse aux concepts de base de l'analyse de survie, particulièrement à ceux relatifs à l'analyse de fiabilité, en proposant une fonction de risque croissante-décroissante dans le modèle à risques proportionnels. En ce qui concerne le troisième chapitre, il porte sur l'utilisation des statistiques d'ordre extrême dans l'usinage, notamment dans la détection de pièces défectueuses par lots, la fiabilité de l'outil de coupe et la modélisation des meilleures surfaces de rugosité. Le dernier chapitre porte sur la prédiction d'éventuelles victimes dans l'Aviation Générale Américaine à partir des données historiques en utilisant l'approche "Peaks-Over Threshold" / The operation of a system in general may at any time be affected by an unforeseen incident. When this incident has major consequences on the system integrity and the quality of system products, then it is said to be in the context of extreme events. Thus, increasingly researchers have a particular interest in modeling such events with studies on the reliability of systems and the prediction of the different risks that can hinder the proper functioning of a system. This thesis takes place in this very perspective. We use Extreme Value Theory (EVT) and extreme order statistics as a decision support tool in modeling and risk management in industry and aviation. Specifically, we model the surface roughness of machined parts and the reliability of the associated cutting tool with the extreme order statistics. We also did a modeling using the "Peaks-Over Threshold, POT" approach to make predictions about the potential victims in the American General Aviation (AGA) following extreme accidents. In addition, the modeling of systems subjected to environmental factors or covariates is most often carried out by proportional hazard models based on the hazard function. In proportional hazard models, the baseline risk function is typically Weibull distribution, which is a monotonic function. The analysis of the operation of some systems like the cutting tool in the industry has shown that a system can deteriorated on one phase and improving on the next phase. Hence, some modifications have been made in the Weibull distribution in order to have non-monotonic basic risk functions, more specifically, the increasing-decreasing risk function. Despite these changes, taking into account extreme operating conditions and overestimating risks are problematics. We have therefore proposed from Gumbel's standard distribution, an increasingdecreasing risk function to take into account extreme conditions, and established mathematical proofs. Furthermore, an example of the application in the field of industry was proposed. This thesis is organized in four chapters and to this must be added a general introduction and a general conclusion. In the first chapter, we recall some basic notions about the Extreme Values Theory. The second chapter focuses on the basic concepts of survival analysis, particularly those relating to reliability analysis by proposing a function of increasing-decreasing hazard function in the proportional hazard model. Regarding the third chapter, it deals with the use of extreme order statistics in industry, particularly in the detection of defective parts, the reliability of the cutting tool and the modeling of the best roughness surfaces. The last chapter focuses on the prediction of potential victims in AGA from historical data using the Peaks-Over Threshold approach.
12

Fonctions de perte en actuariat

Craciun, Geanina January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
13

Widening the applicability of permutation inference

Winkler, Anderson M. January 2016 (has links)
This thesis is divided into three main parts. In the first, we discuss that, although permutation tests can provide exact control of false positives under the reasonable assumption of exchangeability, there are common examples in which global exchangeability does not hold, such as in experiments with repeated measurements or tests in which subjects are related to each other. To allow permutation inference in such cases, we propose an extension of the well known concept of exchangeability blocks, allowing these to be nested in a hierarchical, multi-level definition. This definition allows permutations that retain the original joint distribution unaltered, thus preserving exchangeability. The null hypothesis is tested using only a subset of all otherwise possible permutations. We do not need to explicitly model the degree of dependence between observations; rather the use of such permutation scheme leaves any dependence intact. The strategy is compatible with heteroscedasticity and can be used with permutations, sign flippings, or both combined. In the second part, we exploit properties of test statistics to obtain accelerations irrespective of generic software or hardware improvements. We compare six different approaches using synthetic and real data, assessing the methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). In the third part, we investigate and compare the different methods for assessment of cortical volume and area from magnetic resonance images using surface-based methods. Using data from young adults born with very low birth weight and coetaneous controls, we show that instead of volume, the permutation-based non-parametric combination (NPC) of thickness and area is a more sensitive option for studying joint effects on these two quantities, giving equal weight to variation in both, and allowing a better characterisation of biological processes that can affect brain morphology.
14

Modelling of extremes

Hitz, Adrien January 2016 (has links)
This work focuses on statistical methods to understand how frequently rare events occur and what the magnitude of extreme values such as large losses is. It lies in a field called extreme value analysis whose scope is to provide support for scientific decision making when extreme observations are of particular importance such as in environmental applications, insurance and finance. In the univariate case, I propose new techniques to model tails of discrete distributions and illustrate them in an application on word frequency and multiple birth data. Suitably rescaled, the limiting tails of some discrete distributions are shown to converge to a discrete generalized Pareto distribution and generalized Zipf distribution respectively. In the multivariate high-dimensional case, I suggest modeling tail dependence between random variables by a graph such that its nodes correspond to the variables and shocks propagate through the edges. Relying on the ideas of graphical models, I prove that if the variables satisfy a new notion called asymptotic conditional independence, then the density of the joint distribution can be simplified and expressed in terms of lower dimensional functions. This generalizes the Hammersley- Clifford theorem and enables us to infer tail distributions from observations in reduced dimension. As an illustration, extreme river flows are modeled by a tree graphical model whose structure appears to recover almost exactly the actual river network. A fundamental concept when studying limiting tail distributions is regular variation. I propose a new notion in the multivariate case called one-component regular variation, of which Karamata's and the representation theorem, two important results in the univariate case, are generalizations. Eventually, I turn my attention to website visit data and fit a censored copula Gaussian graphical model allowing the visualization of users' behavior by a graph.
15

Estudo sobre algumas famílias de distribuições de probabilidades generalizadas. / Study on some families of generalized probability distributions.

SANTOS, Rosilda Sousa. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:18:54Z No. of bitstreams: 1 ROSILDA SOUSA SANTOS - DISSERTAÇÃO PPGMAT 2012..pdf: 864926 bytes, checksum: 9d85b58c8bca6174ef968354411068a1 (MD5) / Made available in DSpace on 2018-08-06T14:18:54Z (GMT). No. of bitstreams: 1 ROSILDA SOUSA SANTOS - DISSERTAÇÃO PPGMAT 2012..pdf: 864926 bytes, checksum: 9d85b58c8bca6174ef968354411068a1 (MD5) Previous issue date: 2012-09 / Capes / A proposta desta dissertação está relacionada com o estudo das principais famílias de distribuições de probabilidade generalizadas. Particularmente, estudamos as distribuições Beta Pareto, Beta Exponencial Generalizada, Beta Weibull Modificada, Beta Fréchet e a Kw-G. Para cada uma delas foram obtidas expressões para as funções densidades de probabilidade, funcões de distribuição acumuladas, funções de taxa de falha, funções geratrizes de momentos, bem como foram obtidos os estimadores dos parâmetros pelo método da máxima verossimilhança. Finalmente, para cada distribuição foram feitas aplicações com dados reais. / The purpose of this dissertation is to study the main families of generalized probability distributions. Particularly we study the distributions Beta Pareto, generalized Beta Exponential, Beta Modified Weibull, Beta Fréchet and Kw-G. For each one of these distributions we obtain expressions for the probability density function, cumulative distribution function, hazard function and moment generating function as well as parameter estimates by the method of maximum likelihood. Finally, we make real data applications for each one of the studied distributions.

Page generated in 0.1156 seconds