• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 29
  • 29
  • 29
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Selective Oxidative Stress Induces Dual Damage to Telomeres and Mitochondria in Human T Cells

Wang, Ling, Lu, Zeyuan, Zhao, Juan, Schank, Madison, Cao, Dechao, Dang, Xindi, Nguyen, Lam N., Nguyen, Lam N., Khanal, Sushant, Zhang, Jinyu, Wu, Xiao Y., El Gazzar, Mohamed, Ning, Shunbin, Moorman, Jonathan P., Yao, Zhi Q. 01 January 2021 (has links)
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress-mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells—the major effectors of host adaptive immunity against infection and malignancy—is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1O2) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X-ray repair cross-complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging-associated diseases.
22

DEVELOPMENT OF NOVEL METHODS FOR THE RAPID SEPARATION OF BIOMOLECULES

Mamunooru, Manasa January 2013 (has links)
Successful methods for the separation of biomolecules like amino acids, proteins, peptides, and DNA have been developed previously using HPLC, GC, GC-MS, and CE. Recently CE has become a routine laboratory technique in the analysis of biological molecules. Even though high-resolution separations with small sample volumes is the main advantage, CE is limited by lower sensitivity detection of analytes when universal detectors like UV absorption or refractive index detectors are used. Therefore, sensitivity enhancement can be obtained by either using different detection schemes or electrophoretically based pre- or on-line concentration methods. These can be grouped into two categories. The first category includes IEF, CGF or TGF where sensitivity is achieved through equilibrium electrofocusing. In these methods, electrophoresis and bulk solution is combined in the capillary or separation column to form a null velocity point, a point at which the net velocity of the analyte is zero. Using these methods 10-10,000 fold sensitivity enhancement is achieved. The second category uses velocity gradients but not the nul velocity for the enrichment of samples. These methods include FASS, LVSS, NSM, etc., which are applied for the analysis of small molecules, and 10-10,000 fold sensitivity enhancement is reported by using these methods. In this work, first GEITP an on-line preconcentration technique is applied for the detection of amino acids (using Trp and Tyr as model analytes). This work also established the effects of different parameters on enrichment. The parameters studied include effect of current flow acceleration across capillary inner diameter, the effect of leading electrolyte (LE) concentration on current density, and the effect of applied electric fields on the current density. To explore the application of GEITP in biological fluids, optimized parameters were developed for the detection and separation of Trp and Tyr in artificial cerebrospinal fluid (aCSF). Next, GEITP was applied for enrichment and separation of physiologically relevant concentrations of chromophore-derivatized Asp and Glu in high conductivity samples like artificial cerebrospinal fluid (aCSF). It was concluded from this work that the major factors which influence the enrichment is the ratio of current density to sample conductivity. Finally, GEITP is applied as a prior step before CZE to increase the resolution between analytes without using ampholyte mixtures. In this method GEITP was combined to CZE to achieve resolution adjustment between amino acids mixture using low pressure hydrodynamic flow during CZE without changing the separation column, field strength, or electrolyte system. In this work, a rapid CE method for extraction and analysis of amino acids in planarians, labeled with 4-Fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), was developed. This method was applied to detect the changes in the levels of amino acids when planarians were fed and starved. This method can be applied to study pharmacological effects in planaria, as it can monitor different amino acid levels with respect to feeding. Finally, ssDNA photoproducts of different lengths (11-mer and 63-mer) were separated using two different matrices, a traditional C18 and a PV/DBS (PLRP-S) matrix. A faster separation (within ~ 10 mins) was achieved for a 11-mer by the PLRP-S column. A separation was achieved in the PLRP-S column for the 63-mer while there was no separation in C18 column. Baseline resolution was not achieved. Therefore, C18 can best be used for small length DNA while PLRP-S can be applied for longer length DNA, as it is more hydrophobic than C18 column. Parameters can still be optimized for a baseline separation. / Chemistry
23

Relating genotoxicity to DNA repair and reproductive success in zebrafish (Danio rerio) exposed to environmental toxicants

Reinardy, Helena C. January 2012 (has links)
The potential for environmental toxicants to cause genetic damage (genotoxicity) in organisms is a prominent concern because effects on DNA can compromise reproductive success and survival in organisms. Genotoxicity in male germ cells is of particular concern because damage to DNA in sperm may not be repaired and the consequences of damaged genetic material may be transgenerational (from parent to offspring). An integrated approach across multiple levels of biological organization is necessary to establish linkages between exposure to genotoxicants and subsequent effects at molecular and higher levels of biological organization. This thesis addresses the relation between toxicant-induced genotoxicity and reproductive success in zebrafish, and focuses on a model genotoxicant (hydrogen peroxide) and dissolved metals (radionuclide or non-radioactive forms) under controlled laboratory conditions. Uptake and depuration kinetics of a mixture of radionuclides (54Mn, 60Co, 65Zn, 75Se, 109Cd, 110mAg, 134Cs, and 241Am) were investigated, and radiation dose estimations were computed to link exposure and bioaccumulation with radiation dose. Cobalt (Co, non-radioactive) was selected as an environmentally relevant toxicant for investigation of genotoxicity and effects on reproductive success with a focus on male fish. Chronic exposure (12-d) to 0 – 25 mg l-1 Co resulted in reduced numbers of spawned eggs, lower fertilization success, and reduced survival of larvae to hatching. In male fish, DNA damage was detected in sperm and genes involved in DNA repair (xrcc5, xrcc6, and rad51) were induced in testes from some Co treatments, generally consistent with reduced reproductive success. No change in expression of repair genes in larvae spawned from parents exposed to Co was observed. Overall, results indicate that DNA damage and induction of DNA repair genes can occur rapidly after exposure to genotoxicants and that, if exposure levels are elevated, negative effects on reproduction can occur. Results are considered with particular focus on implications of male genotoxicity on reproductive success and the potential for transgenerational effects of toxicants.
24

Molecular processing of replication intermediates in Escherichia coli after DNA damage

Belle, Jerilyn Jalana, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Biological Sciences. / Title from title screen. Includes bibliographical references.
25

Real-time studies of DNA repair kinetics following low-LET short-pulse electron radiation

Mendes de Oliveira Martins, Carlos Daniel January 2014 (has links)
Radiation-induced damage to the genomic DNA of cells may lead to errors in transcription and replication and, if not repaired correctly, these may result in mutations, genomic instability and cell death. Laser microbeams have generally been used by many research groups to investigate the real-time dynamics of protein recruitment in response to DNA insults in mammalian cells; however, such irradiations induce a plethora of DNA damage (including UV base damage, base damage, SSBs and DSBs and complex damage). A novel experimental setup has been designed capable of following the dynamics of protein recruitment in response to DNA insults in mammalian cells shortly following submicrosecond- pulsed electron irradiation of living mammalian cells, not possible using conventional irradiation techniques. This arrangement was developed based on a 6 MeV electron pulse linear accelerator, to deliver sparsely ionising radiation, coupled to an automated, time-lapse inverted epifluorescence microscope imaging system. An integrated robotic system contained within a physiological environment of 37°C and 5&percnt; CO<sub>2</sub> was used to transfer remotely and repetitively custom-designed cell dishes containing the mammalian cells between irradiation and imaging locations. Following the development of the linear accelerator and associated imaging devices, preliminary ‘proof-of-principle’ investigations were carried out using living HT1080 mammalian cells containing YFP-tagged 53BP1, an established biomarker of DSB, to follow the recruitment and loss of 53BP1 to sites of radiation-induced DNA damage in real-time. This novel experimental setup has allowed for the first time observations of the appearance and disappearance of radiation-induced foci in the same cell population at very early times. These single-foci studies have provided evidence for the formation of not only promptly formed DSBs but also late appearing DNA damage signalled by 53BP1. These data highlight different classes of DSBs formed in response radiation damage. Additionally, the role of cell cycle on the repair kinetics was undertaken using HT1080- 53BP1-YFP cells which also express Geminin-mCherry under appropriate selection. Geminin is increasingly expressed from early S-phase onwards, but is degraded following mitosis. Geminin-associated fluorescence can be used as a marker of progression through the cell cycle. 53BP1 repair kinetics were characterised in response to radiation damage in combination with ATM and PARP inhibitors. These studies provided supporting evidence for the existence of different classes of DSBs, potentially assigned to radiation-induced replication breaks and DSBs formed by enzymatic conversion of clustered damage. These preliminary ‘proof-of-principle’ findings using DNA damage repair as an example, emphasize the use of this novel technology to explore the dynamics of numerous other biochemical processes in living cells in real-time with the knowledge of being able to quantify the range of damage induced by IR coupled with accurate dosimetry. The knowledge obtained may be used to identify potential biological targets coupled with drug discovery for translation into adjuncts for radiotherapy.
26

Faktory ovlivňující odpověď kolorektálního karcinomu na chemoterapeutickou léčbu / The study of the factors affecting colorectal cancer chemotherapy

Dolníková, Alexandra January 2019 (has links)
Application of cytotoxic chemotherapy still remains the essential treatment strategy in advanced colorectal cancer. The intrinsic and acquired drug resistance represents one of the reasons that may even lead to failure of cancer therapy. The DNA damage response pathways have been shown to play an important role in the development of chemoresistance. There is sufficient evidence showing the high-frequency deregulated expression of many DNA repair genes across multiple cancer types. An example of such gene in colorectal cancer is MRE11, which encodes protein known as a sensor of DNA double-strand breaks. In year 2016, there was a substantial study published by our group at The Department of Molecular Biology of Cancer (IEM CAS, Prague), the study analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes, including MRE11, and clinical outcome and efficacy of chemotherapy in colorectal cancer. Our hypothesis, based on the mentioned study, is that specifically and exactly defined microRNAs with ability to regulate certain DNA repair proteins may not only affect the survival of colorectal cancer cells, but also the sensitivity to chemotherapy. In practical part of the submitted thesis we have identified miR-140 as a potential regulator of...
27

Type I Interferon Induction in Cutaneous DNA Damage Syndromes

Klein, Benjamin, Günther, Claudia 24 March 2023 (has links)
Type I interferons (IFNs) as part of the innate immune system have an outstanding importance as antiviral defense cytokines that stimulate innate and adaptive immune responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids, IFN secretion is activated and induces the expression of interferon stimulated genes (ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to autoinflammation and autoimmunity, which is observed in autoimmune disorders such as systemic lupus erythematodes and in monogenic interferonopathies. They are caused by mutations in genes which are involved in sensing or metabolism of intracellular nucleic acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon increased DNA damage, including the formation of micronuclei, cytosolic chromatin fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA damage syndromes, which are caused by mutations in proteins of the DNA repair, share laboratory and clinical features also seen in autoimmune disorders and interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion seems likely. Here, we aim to summarize possible mechanisms of IFN induction in cutaneous DNA damage syndromes with defects in the DNA double-strand repair and nucleotide excision repair. We review recent publications referring to Ataxia teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome, Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role of type I IFN in cancer and these syndromes.
28

In vitro partial-body dose assessment using a radiation responsive protein biomarker /

Leidel, Jason M. January 2005 (has links) (PDF)
Thesis (M.S.)--Uniformed Services University of the Health Sciences, 2005. / Typescript (photocopy).
29

The role of Organic Cation Transporters in the pharmacokinetics of clinically relevant DNA damaging agents : in vivo and in silico studies

Papaluca, Arturo 03 1900 (has links)
No description available.

Page generated in 0.1376 seconds