• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude sur les fonctions in vivo des GEFs DOCK chez les mammifères

Laurin, Mélanie 09 1900 (has links)
Dock1 (aussi nommé Dock180) est le membre prototypique de la famille Dock d’activateurs des petites GTPases de la famille Rho. Dock1 agit au sein d’une voie de signalisation conservée au cours de l’évolution et des études génétiques ont démontré que les orthologues de Dock1, myoblast city (mbc) chez la drosophile et Ced-5 chez le nématode, activent Rac dans divers processus biologiques. Notamment, mbc est un important régulateur de la fusion des myoblastes lors de la formation des fibres musculaires de drosophile. Mbc est aussi essentiel à la migration collective d’un groupe de cellules, appelées cellules de bordures, lors de leur migration dans la chambre de l’oeuf suite à l’activation de récepteurs à activité tyrosine kinase (RTK). La migration collective des cellules de bordures récapitule certains des événements observés lorsque des cellules tumorales envahissent le tissu environnant lors de la formation de métastases. Chez les mammifères, des études réalisées en lignées cellulaires suggèrent que Dock1 est aussi un régulateur du cytosquelette lors de la migration cellulaire. De plus, certaines études ont démontré que la voie Dock1/Rac agit en aval de RTKs lors de l’invasion de cellules de glioblastome. Néanmoins, les fonctions in vivo de Dock1 chez les mammifères demeurent méconnues et le but de cette thèse est d’identifier et de caractériser certaines de ses fonctions. Guidés par la fonction de mbc, nous démontrons dans l’objectif no 1 un rôle essentiel pour ce gène au cours du développement embryonnaire grâce à la caractérisation d’une souris Dock1 knock-out. Des défauts sévères de fusion des myoblastes sont observés en absence de l’expression de Dock1 et ils contribuent à la réduction de la masse musculaire des souris mutantes. De plus, nous avons constaté une contribution du gène Dock5, un membre de la famille Dock proche de Dock1, au développement des fibres musculaires. Dans l’objectif no 2, nous avons observé que des hauts niveaux d’expression de DOCK1 corrèlent avec un mauvais pronostic chez les patientes atteintes de cancer du sein possédant une forte expression du gène codant pour le RTK HER2. Une surexpression ou une amplification du locus codant pour le récepteur HER2 est associée à près de 20% des cas de cancer du sein. Les cancers de ces patientes développent fréquemment des métastases et sont associés à un mauvais pronostic. Des études biochimiques ont révélé que DOCK1 interagit avec le récepteur HER2 dans des cellules de cancer du sein. De plus, DOCK1 est essentiel à l’activation de RAC et à la migration cellulaire induite par HER2 dans ces cellules. L’utilisation d’un modèle de cancer du sein médié par HER2 chez la souris combiné avec l’inactivation du gène Dock1 dans les glandes mammaires, nous a permis d’identifier Dock1 et Rac comme de nouveaux effecteurs de la croissance tumorale et de la formation de métastases régulées par l’oncogène HER2. Nous concluons que l’utilisation de différents modèles de souris knock-out pour le gène Dock1 nous a permis d’identifier des fonctions clés de ce gène. Tout comme son orthologue mbc, Dock1 joue un rôle important lors du développement embryonnaire en régulant notamment la fusion des myoblastes. Nos études ont également contribué à démontrer un important degré de conservation des mécanismes moléculaires de fusion entre les espèces. De plus, DOCK1 agit en aval du RTK HER2 et son expression dans les cellules épithéliales de glandes mammaires contribue au développement tumoral et à la formation de métastases induits par cet oncogène. / Dock1 (also known as Dock180) is the prototypical member of the Dock family of Rho GTPase activators (RhoGEFs). Genetic studies in Drosophila and C. elegans have demonstrated that Dock1 orthologues act upstream of the Rac GTPase to activate it during various biological processes. Myoblast city (mbc), Dock1 ortholog in the Drosophila, is an important regulator of myoblast fusion during muscle fiber formation. Moreover, mbc regulates the collective migration of a cluster of border cells downstream of the activation of some tyrosine kinase receptors (RTKs). Migration of border cells is often view as a model for studying the invasive migration of cancer cells during metastasis development. Work done in cell lines also suggests that Dock1 is an important cytoskeletal regulator that controls cell migration. The Dock1/Rac pathway was also shown to act downstream of some RTKs to promote the invasion of glioblastoma cells. Yet, the in vivo functions of Dock1 in mammals are still poorly understood and the identification and characterization of some of these functions is the main objective of my thesis. Guided by the function of mbc, in Aim #1 we revealed that Dock1 is essential to embryonic development by characterizing a Dock1 knock-out mouse model. A deficiency in myoblast fusion was observed in Dock1-null embryos which led to a reduction in their muscle mass. Furthermore, we uncovered a contribution of the other Dock1-related GEF, Dock5, to myofiber development. In Aim #2 a correlation between high level of DOCK1 expression and a poor prognosis in HER2+ breast cancer patients was revealed. Amplification or overexpression of the HER2 receptor tyrosine kinase is associated with near 20% of breast cancer cases. The presence of this genetic abnormality correlates with a poor prognosis and the development of metastasis. Biochemical and in vitro studies led us to identify that DOCK1 interacts with HER2 and is essential to HER2-mediated RAC activation and migration. The use of a HER2 breast cancer mouse model with Dock1 inactivation in the mammary gland led us to identify DOCK1-RAC signaling as novel effectors in HER2-mediated tumor growth and metastasis. We conclude that the use of Dock1 mouse models allowed us to identify some of the key functions regulated by this gene in vivo. Much like its ortholog mbc, Dock1 is essential to embryonic development and regulates myoblast fusion. Our study also reveals important degree of conservation of the mechanisms that regulate fusion between species. In addition, DOCK1 acts downstream of the HER2 RTK in mammary epithelial cells where it contributes to the progression of breast cancer pathology and the formation of metastasis induced by this oncogene.
2

Exploring Rac GTPase regulation : the molecular mechanisms governing the DOCK180 and ELMO interaction and the role of this complex in Rac-mediated cell migration

Patel, Manishha 02 1900 (has links)
Les protéines DOCK180 et ELMO coopèrent ensemble biochimiquement et génétiquement afin d’activer la GTPase Rac1 lors de plusieurs évènements biologiques. Toutefois, le rôle que jouent ces protéines dans la signalisation par Rac est encore mal compris. Nous émettons l’hypothèse que Dock180 agit comme activateur de Rac, alors que ELMO est requis pour l’intégration de la signalisation de Rac plutôt que son activation per se. Nous postulons que ELMO agit comme signal de localisation intracellulaire afin de restreindre de façon spatio-temporelle la signalisation de Rac en aval de Dock180, et/ou que ELMO agit comme protéine d’échafaudage entre Rac et ses effecteurs pour amplifier la migration cellulaire. Dans l’objectif nº 1, nous démontrons que le domaine PH atypique de ELMO1 est le site d’interaction principal entre cette protéine et DOCK180. De plus, nous démontrons que la liaison entre ELMO et DOCK180 n’est pas nécessaire pour l’activation de Rac, mais est plutôt essentielle pour faciliter la réorganisation du cytosquelette induite par l’activation de Rac en aval de Dock180. Ces résultats impliquent que ELMO pourrait jouer des rôles additionnels dans la signalisation par Rac. Dans l’objectif nº 2, nous avons découvert l’existence d’une homologie structurelle entre ELMO et un module d’autorégulation de la formine Dia1, et avons identifié trois nouveaux domaines dans la protéine ELMO : les domaines RBD, EID et EAD. De façon analogue à Dia1, nous avons découvert que ELMO à l’état basal est autoinhibé grâce à des intéractions intramoléculaires. Nous proposons que l’état d’activation des protéines ELMO est régulé de façon similaire aux formines de la famille Dia, c’est-à-dire grâce à des interactions avec d’autres protéines. Dans l’objectif nº 3, nous identifions un domaine RBD polyvalent chez ELMO. Ce domaine possède une double spécificité pour les GTPases de la famille Rho et Arf. Nous avons découvert que Arl4A agit comme signal de recrutement membranaire pour le module ELMO/DOCK180/Rac. Nos résultats nous permettent de supposer que d’autres GTPases pourraient être impliquées dans l’activation et la localisation de cette voie de signalisation. Nous concluons qu’à l’état basal, ELMO et DOCK180 forment un complexe dans lequel ELMO est dans sa conformation autoinhibée. Bien que le mécanisme d’activation de ELMO ne soit pas encore bien compris, nous avons découvert que, lorsqu’il y a stimulation cellulaire, certaines GTPases liées au GTP peuvent intéragir avec le domaine RBD de ELMO pour relâcher les contacts intramoléculaires et/ou localiser le complexe à la membrane. Ainsi, les GTPases peuvent servir d’ancrage au complexe ELMO/DOCK180 pour assurer une regulation spatiotemporelle adequate de l’activation et de la signalisation de Rac. / DOCK180 and ELMO cooperate biochemically and genetically to activate Rac in several biological events. However, the role of these proteins in Rac signaling is still poorly understood. We hypothesize that DOCK180 functions as a RacGEF, with ELMO binding to DOCK180 being required for integration of proper Rac signaling rather than Rac activation per se. We postulate that ELMO acts as a subcellular targeting signal for spatio-temporal restriction of DOCK180-mediated Rac signaling and/or as a scaffold for Rac effectors to enforce cell migration. In Aim #1, we elucidate that the atypical ELMO1 PH is the major DOCK180 binding site. We demonstrate that the binding of ELMO1 to DOCK180 is not necessary for Rac GTP-loading, but is instead required to facilitate Rac-GTP induced cytoskeletal changes following DOCK180 activation. These results imply additional roles for ELMO in mediating Rac signaling. In Aim #2, we reveal structural homology between ELMO and an autoregulatory module in the formin, Dia1, and identify three novel domains in ELMOs: the RBD, EID and EAD. Analogous to Dia1, we uncovered that ELMO is autoinhibited via intramolecular interactions at basal state. We propose that the activation state of ELMO proteins is regulated, much like in Dia-family formins, via interaction with other proteins. Aim #3 identifies a polyvalent RBD in ELMO with dual specificity for Rho and Arf family GTPases. We found Arl4A as a novel membrane recruitment signal for the ELMO/DOCK180/Rac module. Our results may have broad implications in the activation and localization of this pathway by additional GTPases. We conclude that, at basal levels, ELMO/DOCK180 is complexed, with ELMO in an autoinhibited state in the cytosol. Through cell stimulation, certain GTPases will be activated that now bind the ELMO RBD and alleviate the intramolecular contacts. In this way, the GTPase anchors the activated ELMO/DOCK180 module in place for proper spatio-temporal regulation of Rac activation and signaling.
3

Étude sur les fonctions in vivo des GEFs DOCK chez les mammifères

Laurin, Mélanie 09 1900 (has links)
Dock1 (aussi nommé Dock180) est le membre prototypique de la famille Dock d’activateurs des petites GTPases de la famille Rho. Dock1 agit au sein d’une voie de signalisation conservée au cours de l’évolution et des études génétiques ont démontré que les orthologues de Dock1, myoblast city (mbc) chez la drosophile et Ced-5 chez le nématode, activent Rac dans divers processus biologiques. Notamment, mbc est un important régulateur de la fusion des myoblastes lors de la formation des fibres musculaires de drosophile. Mbc est aussi essentiel à la migration collective d’un groupe de cellules, appelées cellules de bordures, lors de leur migration dans la chambre de l’oeuf suite à l’activation de récepteurs à activité tyrosine kinase (RTK). La migration collective des cellules de bordures récapitule certains des événements observés lorsque des cellules tumorales envahissent le tissu environnant lors de la formation de métastases. Chez les mammifères, des études réalisées en lignées cellulaires suggèrent que Dock1 est aussi un régulateur du cytosquelette lors de la migration cellulaire. De plus, certaines études ont démontré que la voie Dock1/Rac agit en aval de RTKs lors de l’invasion de cellules de glioblastome. Néanmoins, les fonctions in vivo de Dock1 chez les mammifères demeurent méconnues et le but de cette thèse est d’identifier et de caractériser certaines de ses fonctions. Guidés par la fonction de mbc, nous démontrons dans l’objectif no 1 un rôle essentiel pour ce gène au cours du développement embryonnaire grâce à la caractérisation d’une souris Dock1 knock-out. Des défauts sévères de fusion des myoblastes sont observés en absence de l’expression de Dock1 et ils contribuent à la réduction de la masse musculaire des souris mutantes. De plus, nous avons constaté une contribution du gène Dock5, un membre de la famille Dock proche de Dock1, au développement des fibres musculaires. Dans l’objectif no 2, nous avons observé que des hauts niveaux d’expression de DOCK1 corrèlent avec un mauvais pronostic chez les patientes atteintes de cancer du sein possédant une forte expression du gène codant pour le RTK HER2. Une surexpression ou une amplification du locus codant pour le récepteur HER2 est associée à près de 20% des cas de cancer du sein. Les cancers de ces patientes développent fréquemment des métastases et sont associés à un mauvais pronostic. Des études biochimiques ont révélé que DOCK1 interagit avec le récepteur HER2 dans des cellules de cancer du sein. De plus, DOCK1 est essentiel à l’activation de RAC et à la migration cellulaire induite par HER2 dans ces cellules. L’utilisation d’un modèle de cancer du sein médié par HER2 chez la souris combiné avec l’inactivation du gène Dock1 dans les glandes mammaires, nous a permis d’identifier Dock1 et Rac comme de nouveaux effecteurs de la croissance tumorale et de la formation de métastases régulées par l’oncogène HER2. Nous concluons que l’utilisation de différents modèles de souris knock-out pour le gène Dock1 nous a permis d’identifier des fonctions clés de ce gène. Tout comme son orthologue mbc, Dock1 joue un rôle important lors du développement embryonnaire en régulant notamment la fusion des myoblastes. Nos études ont également contribué à démontrer un important degré de conservation des mécanismes moléculaires de fusion entre les espèces. De plus, DOCK1 agit en aval du RTK HER2 et son expression dans les cellules épithéliales de glandes mammaires contribue au développement tumoral et à la formation de métastases induits par cet oncogène. / Dock1 (also known as Dock180) is the prototypical member of the Dock family of Rho GTPase activators (RhoGEFs). Genetic studies in Drosophila and C. elegans have demonstrated that Dock1 orthologues act upstream of the Rac GTPase to activate it during various biological processes. Myoblast city (mbc), Dock1 ortholog in the Drosophila, is an important regulator of myoblast fusion during muscle fiber formation. Moreover, mbc regulates the collective migration of a cluster of border cells downstream of the activation of some tyrosine kinase receptors (RTKs). Migration of border cells is often view as a model for studying the invasive migration of cancer cells during metastasis development. Work done in cell lines also suggests that Dock1 is an important cytoskeletal regulator that controls cell migration. The Dock1/Rac pathway was also shown to act downstream of some RTKs to promote the invasion of glioblastoma cells. Yet, the in vivo functions of Dock1 in mammals are still poorly understood and the identification and characterization of some of these functions is the main objective of my thesis. Guided by the function of mbc, in Aim #1 we revealed that Dock1 is essential to embryonic development by characterizing a Dock1 knock-out mouse model. A deficiency in myoblast fusion was observed in Dock1-null embryos which led to a reduction in their muscle mass. Furthermore, we uncovered a contribution of the other Dock1-related GEF, Dock5, to myofiber development. In Aim #2 a correlation between high level of DOCK1 expression and a poor prognosis in HER2+ breast cancer patients was revealed. Amplification or overexpression of the HER2 receptor tyrosine kinase is associated with near 20% of breast cancer cases. The presence of this genetic abnormality correlates with a poor prognosis and the development of metastasis. Biochemical and in vitro studies led us to identify that DOCK1 interacts with HER2 and is essential to HER2-mediated RAC activation and migration. The use of a HER2 breast cancer mouse model with Dock1 inactivation in the mammary gland led us to identify DOCK1-RAC signaling as novel effectors in HER2-mediated tumor growth and metastasis. We conclude that the use of Dock1 mouse models allowed us to identify some of the key functions regulated by this gene in vivo. Much like its ortholog mbc, Dock1 is essential to embryonic development and regulates myoblast fusion. Our study also reveals important degree of conservation of the mechanisms that regulate fusion between species. In addition, DOCK1 acts downstream of the HER2 RTK in mammary epithelial cells where it contributes to the progression of breast cancer pathology and the formation of metastasis induced by this oncogene.
4

Exploring Rac GTPase regulation : the molecular mechanisms governing the DOCK180 and ELMO interaction and the role of this complex in Rac-mediated cell migration

Patel, Manishha 02 1900 (has links)
Les protéines DOCK180 et ELMO coopèrent ensemble biochimiquement et génétiquement afin d’activer la GTPase Rac1 lors de plusieurs évènements biologiques. Toutefois, le rôle que jouent ces protéines dans la signalisation par Rac est encore mal compris. Nous émettons l’hypothèse que Dock180 agit comme activateur de Rac, alors que ELMO est requis pour l’intégration de la signalisation de Rac plutôt que son activation per se. Nous postulons que ELMO agit comme signal de localisation intracellulaire afin de restreindre de façon spatio-temporelle la signalisation de Rac en aval de Dock180, et/ou que ELMO agit comme protéine d’échafaudage entre Rac et ses effecteurs pour amplifier la migration cellulaire. Dans l’objectif nº 1, nous démontrons que le domaine PH atypique de ELMO1 est le site d’interaction principal entre cette protéine et DOCK180. De plus, nous démontrons que la liaison entre ELMO et DOCK180 n’est pas nécessaire pour l’activation de Rac, mais est plutôt essentielle pour faciliter la réorganisation du cytosquelette induite par l’activation de Rac en aval de Dock180. Ces résultats impliquent que ELMO pourrait jouer des rôles additionnels dans la signalisation par Rac. Dans l’objectif nº 2, nous avons découvert l’existence d’une homologie structurelle entre ELMO et un module d’autorégulation de la formine Dia1, et avons identifié trois nouveaux domaines dans la protéine ELMO : les domaines RBD, EID et EAD. De façon analogue à Dia1, nous avons découvert que ELMO à l’état basal est autoinhibé grâce à des intéractions intramoléculaires. Nous proposons que l’état d’activation des protéines ELMO est régulé de façon similaire aux formines de la famille Dia, c’est-à-dire grâce à des interactions avec d’autres protéines. Dans l’objectif nº 3, nous identifions un domaine RBD polyvalent chez ELMO. Ce domaine possède une double spécificité pour les GTPases de la famille Rho et Arf. Nous avons découvert que Arl4A agit comme signal de recrutement membranaire pour le module ELMO/DOCK180/Rac. Nos résultats nous permettent de supposer que d’autres GTPases pourraient être impliquées dans l’activation et la localisation de cette voie de signalisation. Nous concluons qu’à l’état basal, ELMO et DOCK180 forment un complexe dans lequel ELMO est dans sa conformation autoinhibée. Bien que le mécanisme d’activation de ELMO ne soit pas encore bien compris, nous avons découvert que, lorsqu’il y a stimulation cellulaire, certaines GTPases liées au GTP peuvent intéragir avec le domaine RBD de ELMO pour relâcher les contacts intramoléculaires et/ou localiser le complexe à la membrane. Ainsi, les GTPases peuvent servir d’ancrage au complexe ELMO/DOCK180 pour assurer une regulation spatiotemporelle adequate de l’activation et de la signalisation de Rac. / DOCK180 and ELMO cooperate biochemically and genetically to activate Rac in several biological events. However, the role of these proteins in Rac signaling is still poorly understood. We hypothesize that DOCK180 functions as a RacGEF, with ELMO binding to DOCK180 being required for integration of proper Rac signaling rather than Rac activation per se. We postulate that ELMO acts as a subcellular targeting signal for spatio-temporal restriction of DOCK180-mediated Rac signaling and/or as a scaffold for Rac effectors to enforce cell migration. In Aim #1, we elucidate that the atypical ELMO1 PH is the major DOCK180 binding site. We demonstrate that the binding of ELMO1 to DOCK180 is not necessary for Rac GTP-loading, but is instead required to facilitate Rac-GTP induced cytoskeletal changes following DOCK180 activation. These results imply additional roles for ELMO in mediating Rac signaling. In Aim #2, we reveal structural homology between ELMO and an autoregulatory module in the formin, Dia1, and identify three novel domains in ELMOs: the RBD, EID and EAD. Analogous to Dia1, we uncovered that ELMO is autoinhibited via intramolecular interactions at basal state. We propose that the activation state of ELMO proteins is regulated, much like in Dia-family formins, via interaction with other proteins. Aim #3 identifies a polyvalent RBD in ELMO with dual specificity for Rho and Arf family GTPases. We found Arl4A as a novel membrane recruitment signal for the ELMO/DOCK180/Rac module. Our results may have broad implications in the activation and localization of this pathway by additional GTPases. We conclude that, at basal levels, ELMO/DOCK180 is complexed, with ELMO in an autoinhibited state in the cytosol. Through cell stimulation, certain GTPases will be activated that now bind the ELMO RBD and alleviate the intramolecular contacts. In this way, the GTPase anchors the activated ELMO/DOCK180 module in place for proper spatio-temporal regulation of Rac activation and signaling.

Page generated in 0.027 seconds