• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des voies de signalisation en amont et en aval de la petite GTPase Rac1

Pelletier, Ariane 09 1900 (has links)
Les évènements moléculaires en amont et en aval de la petite GTPase Rac1 menant à la migration cellulaire sont encore mal compris. La première partie du projet consiste à utiliser une approche protéomique non-biaisée pour tenter d’identifier les partenaires de Rac. Pour ce faire, nous avons développé une méthode de purification efficace et rapide de manière à maintenir les complexes protéiques transitoires intacts. Dans un deuxième temps, nous avons identifié des sites de phosphorylation sur la RacGEF atypique Dock5 en aval des intégrines. Afin de mieux comprendre le rôle de la phosphorylation de cette protéine, nous avons criblé une banque de kinases ce qui nous a permis d’identifier 14 kinases pouvant phosphoryler la région PXXP de Dock5. D’après nos résultats, ceci aurait comme effet de diminuer l’interaction entre Dock5 et ses partenaires contenant des domaines SH3. Ainsi, la phosphorylation de Dock5 régulerait la formation de complexes et le recrutement de Dock5 par des protéines adaptatrices. / The molecular events upstream and downstream of Rac leading to cell migration and still to date not fully understood allthough more than 20 effectors have been identified for this GTPase. The first part of our project is to use a non-biased proteomic approach to try to identify novel binding partners of Rac1. In order to do so, we developped a novel purification strategy that enabled us to purify Rac and its binding partners in a timely manner. The second part of our project is to understand the role of Dock5 phosphorylation downstream of the integrins. We identified phosphorylated residues in the PXXP region of the atypical RacGEF upon fibronectin stimulation and found 14 kinases able to phosphorylate this region. According to our results, Dock5 phosphorylation does not affect its GEF activity but diminishes its interaction with various SH3 domain-containing proteins. Thus, our data suggest that Dock5 phosphorylation would regulate complex formation and recruitment of this protein by adaptor proteins.
2

Étude des voies de signalisation en amont et en aval de la petite GTPase Rac1

Pelletier, Ariane 09 1900 (has links)
Les évènements moléculaires en amont et en aval de la petite GTPase Rac1 menant à la migration cellulaire sont encore mal compris. La première partie du projet consiste à utiliser une approche protéomique non-biaisée pour tenter d’identifier les partenaires de Rac. Pour ce faire, nous avons développé une méthode de purification efficace et rapide de manière à maintenir les complexes protéiques transitoires intacts. Dans un deuxième temps, nous avons identifié des sites de phosphorylation sur la RacGEF atypique Dock5 en aval des intégrines. Afin de mieux comprendre le rôle de la phosphorylation de cette protéine, nous avons criblé une banque de kinases ce qui nous a permis d’identifier 14 kinases pouvant phosphoryler la région PXXP de Dock5. D’après nos résultats, ceci aurait comme effet de diminuer l’interaction entre Dock5 et ses partenaires contenant des domaines SH3. Ainsi, la phosphorylation de Dock5 régulerait la formation de complexes et le recrutement de Dock5 par des protéines adaptatrices. / The molecular events upstream and downstream of Rac leading to cell migration and still to date not fully understood allthough more than 20 effectors have been identified for this GTPase. The first part of our project is to use a non-biased proteomic approach to try to identify novel binding partners of Rac1. In order to do so, we developped a novel purification strategy that enabled us to purify Rac and its binding partners in a timely manner. The second part of our project is to understand the role of Dock5 phosphorylation downstream of the integrins. We identified phosphorylated residues in the PXXP region of the atypical RacGEF upon fibronectin stimulation and found 14 kinases able to phosphorylate this region. According to our results, Dock5 phosphorylation does not affect its GEF activity but diminishes its interaction with various SH3 domain-containing proteins. Thus, our data suggest that Dock5 phosphorylation would regulate complex formation and recruitment of this protein by adaptor proteins.
3

Étude sur les fonctions in vivo des GEFs DOCK chez les mammifères

Laurin, Mélanie 09 1900 (has links)
Dock1 (aussi nommé Dock180) est le membre prototypique de la famille Dock d’activateurs des petites GTPases de la famille Rho. Dock1 agit au sein d’une voie de signalisation conservée au cours de l’évolution et des études génétiques ont démontré que les orthologues de Dock1, myoblast city (mbc) chez la drosophile et Ced-5 chez le nématode, activent Rac dans divers processus biologiques. Notamment, mbc est un important régulateur de la fusion des myoblastes lors de la formation des fibres musculaires de drosophile. Mbc est aussi essentiel à la migration collective d’un groupe de cellules, appelées cellules de bordures, lors de leur migration dans la chambre de l’oeuf suite à l’activation de récepteurs à activité tyrosine kinase (RTK). La migration collective des cellules de bordures récapitule certains des événements observés lorsque des cellules tumorales envahissent le tissu environnant lors de la formation de métastases. Chez les mammifères, des études réalisées en lignées cellulaires suggèrent que Dock1 est aussi un régulateur du cytosquelette lors de la migration cellulaire. De plus, certaines études ont démontré que la voie Dock1/Rac agit en aval de RTKs lors de l’invasion de cellules de glioblastome. Néanmoins, les fonctions in vivo de Dock1 chez les mammifères demeurent méconnues et le but de cette thèse est d’identifier et de caractériser certaines de ses fonctions. Guidés par la fonction de mbc, nous démontrons dans l’objectif no 1 un rôle essentiel pour ce gène au cours du développement embryonnaire grâce à la caractérisation d’une souris Dock1 knock-out. Des défauts sévères de fusion des myoblastes sont observés en absence de l’expression de Dock1 et ils contribuent à la réduction de la masse musculaire des souris mutantes. De plus, nous avons constaté une contribution du gène Dock5, un membre de la famille Dock proche de Dock1, au développement des fibres musculaires. Dans l’objectif no 2, nous avons observé que des hauts niveaux d’expression de DOCK1 corrèlent avec un mauvais pronostic chez les patientes atteintes de cancer du sein possédant une forte expression du gène codant pour le RTK HER2. Une surexpression ou une amplification du locus codant pour le récepteur HER2 est associée à près de 20% des cas de cancer du sein. Les cancers de ces patientes développent fréquemment des métastases et sont associés à un mauvais pronostic. Des études biochimiques ont révélé que DOCK1 interagit avec le récepteur HER2 dans des cellules de cancer du sein. De plus, DOCK1 est essentiel à l’activation de RAC et à la migration cellulaire induite par HER2 dans ces cellules. L’utilisation d’un modèle de cancer du sein médié par HER2 chez la souris combiné avec l’inactivation du gène Dock1 dans les glandes mammaires, nous a permis d’identifier Dock1 et Rac comme de nouveaux effecteurs de la croissance tumorale et de la formation de métastases régulées par l’oncogène HER2. Nous concluons que l’utilisation de différents modèles de souris knock-out pour le gène Dock1 nous a permis d’identifier des fonctions clés de ce gène. Tout comme son orthologue mbc, Dock1 joue un rôle important lors du développement embryonnaire en régulant notamment la fusion des myoblastes. Nos études ont également contribué à démontrer un important degré de conservation des mécanismes moléculaires de fusion entre les espèces. De plus, DOCK1 agit en aval du RTK HER2 et son expression dans les cellules épithéliales de glandes mammaires contribue au développement tumoral et à la formation de métastases induits par cet oncogène. / Dock1 (also known as Dock180) is the prototypical member of the Dock family of Rho GTPase activators (RhoGEFs). Genetic studies in Drosophila and C. elegans have demonstrated that Dock1 orthologues act upstream of the Rac GTPase to activate it during various biological processes. Myoblast city (mbc), Dock1 ortholog in the Drosophila, is an important regulator of myoblast fusion during muscle fiber formation. Moreover, mbc regulates the collective migration of a cluster of border cells downstream of the activation of some tyrosine kinase receptors (RTKs). Migration of border cells is often view as a model for studying the invasive migration of cancer cells during metastasis development. Work done in cell lines also suggests that Dock1 is an important cytoskeletal regulator that controls cell migration. The Dock1/Rac pathway was also shown to act downstream of some RTKs to promote the invasion of glioblastoma cells. Yet, the in vivo functions of Dock1 in mammals are still poorly understood and the identification and characterization of some of these functions is the main objective of my thesis. Guided by the function of mbc, in Aim #1 we revealed that Dock1 is essential to embryonic development by characterizing a Dock1 knock-out mouse model. A deficiency in myoblast fusion was observed in Dock1-null embryos which led to a reduction in their muscle mass. Furthermore, we uncovered a contribution of the other Dock1-related GEF, Dock5, to myofiber development. In Aim #2 a correlation between high level of DOCK1 expression and a poor prognosis in HER2+ breast cancer patients was revealed. Amplification or overexpression of the HER2 receptor tyrosine kinase is associated with near 20% of breast cancer cases. The presence of this genetic abnormality correlates with a poor prognosis and the development of metastasis. Biochemical and in vitro studies led us to identify that DOCK1 interacts with HER2 and is essential to HER2-mediated RAC activation and migration. The use of a HER2 breast cancer mouse model with Dock1 inactivation in the mammary gland led us to identify DOCK1-RAC signaling as novel effectors in HER2-mediated tumor growth and metastasis. We conclude that the use of Dock1 mouse models allowed us to identify some of the key functions regulated by this gene in vivo. Much like its ortholog mbc, Dock1 is essential to embryonic development and regulates myoblast fusion. Our study also reveals important degree of conservation of the mechanisms that regulate fusion between species. In addition, DOCK1 acts downstream of the HER2 RTK in mammary epithelial cells where it contributes to the progression of breast cancer pathology and the formation of metastasis induced by this oncogene.
4

Étude sur les fonctions in vivo des GEFs DOCK chez les mammifères

Laurin, Mélanie 09 1900 (has links)
Dock1 (aussi nommé Dock180) est le membre prototypique de la famille Dock d’activateurs des petites GTPases de la famille Rho. Dock1 agit au sein d’une voie de signalisation conservée au cours de l’évolution et des études génétiques ont démontré que les orthologues de Dock1, myoblast city (mbc) chez la drosophile et Ced-5 chez le nématode, activent Rac dans divers processus biologiques. Notamment, mbc est un important régulateur de la fusion des myoblastes lors de la formation des fibres musculaires de drosophile. Mbc est aussi essentiel à la migration collective d’un groupe de cellules, appelées cellules de bordures, lors de leur migration dans la chambre de l’oeuf suite à l’activation de récepteurs à activité tyrosine kinase (RTK). La migration collective des cellules de bordures récapitule certains des événements observés lorsque des cellules tumorales envahissent le tissu environnant lors de la formation de métastases. Chez les mammifères, des études réalisées en lignées cellulaires suggèrent que Dock1 est aussi un régulateur du cytosquelette lors de la migration cellulaire. De plus, certaines études ont démontré que la voie Dock1/Rac agit en aval de RTKs lors de l’invasion de cellules de glioblastome. Néanmoins, les fonctions in vivo de Dock1 chez les mammifères demeurent méconnues et le but de cette thèse est d’identifier et de caractériser certaines de ses fonctions. Guidés par la fonction de mbc, nous démontrons dans l’objectif no 1 un rôle essentiel pour ce gène au cours du développement embryonnaire grâce à la caractérisation d’une souris Dock1 knock-out. Des défauts sévères de fusion des myoblastes sont observés en absence de l’expression de Dock1 et ils contribuent à la réduction de la masse musculaire des souris mutantes. De plus, nous avons constaté une contribution du gène Dock5, un membre de la famille Dock proche de Dock1, au développement des fibres musculaires. Dans l’objectif no 2, nous avons observé que des hauts niveaux d’expression de DOCK1 corrèlent avec un mauvais pronostic chez les patientes atteintes de cancer du sein possédant une forte expression du gène codant pour le RTK HER2. Une surexpression ou une amplification du locus codant pour le récepteur HER2 est associée à près de 20% des cas de cancer du sein. Les cancers de ces patientes développent fréquemment des métastases et sont associés à un mauvais pronostic. Des études biochimiques ont révélé que DOCK1 interagit avec le récepteur HER2 dans des cellules de cancer du sein. De plus, DOCK1 est essentiel à l’activation de RAC et à la migration cellulaire induite par HER2 dans ces cellules. L’utilisation d’un modèle de cancer du sein médié par HER2 chez la souris combiné avec l’inactivation du gène Dock1 dans les glandes mammaires, nous a permis d’identifier Dock1 et Rac comme de nouveaux effecteurs de la croissance tumorale et de la formation de métastases régulées par l’oncogène HER2. Nous concluons que l’utilisation de différents modèles de souris knock-out pour le gène Dock1 nous a permis d’identifier des fonctions clés de ce gène. Tout comme son orthologue mbc, Dock1 joue un rôle important lors du développement embryonnaire en régulant notamment la fusion des myoblastes. Nos études ont également contribué à démontrer un important degré de conservation des mécanismes moléculaires de fusion entre les espèces. De plus, DOCK1 agit en aval du RTK HER2 et son expression dans les cellules épithéliales de glandes mammaires contribue au développement tumoral et à la formation de métastases induits par cet oncogène. / Dock1 (also known as Dock180) is the prototypical member of the Dock family of Rho GTPase activators (RhoGEFs). Genetic studies in Drosophila and C. elegans have demonstrated that Dock1 orthologues act upstream of the Rac GTPase to activate it during various biological processes. Myoblast city (mbc), Dock1 ortholog in the Drosophila, is an important regulator of myoblast fusion during muscle fiber formation. Moreover, mbc regulates the collective migration of a cluster of border cells downstream of the activation of some tyrosine kinase receptors (RTKs). Migration of border cells is often view as a model for studying the invasive migration of cancer cells during metastasis development. Work done in cell lines also suggests that Dock1 is an important cytoskeletal regulator that controls cell migration. The Dock1/Rac pathway was also shown to act downstream of some RTKs to promote the invasion of glioblastoma cells. Yet, the in vivo functions of Dock1 in mammals are still poorly understood and the identification and characterization of some of these functions is the main objective of my thesis. Guided by the function of mbc, in Aim #1 we revealed that Dock1 is essential to embryonic development by characterizing a Dock1 knock-out mouse model. A deficiency in myoblast fusion was observed in Dock1-null embryos which led to a reduction in their muscle mass. Furthermore, we uncovered a contribution of the other Dock1-related GEF, Dock5, to myofiber development. In Aim #2 a correlation between high level of DOCK1 expression and a poor prognosis in HER2+ breast cancer patients was revealed. Amplification or overexpression of the HER2 receptor tyrosine kinase is associated with near 20% of breast cancer cases. The presence of this genetic abnormality correlates with a poor prognosis and the development of metastasis. Biochemical and in vitro studies led us to identify that DOCK1 interacts with HER2 and is essential to HER2-mediated RAC activation and migration. The use of a HER2 breast cancer mouse model with Dock1 inactivation in the mammary gland led us to identify DOCK1-RAC signaling as novel effectors in HER2-mediated tumor growth and metastasis. We conclude that the use of Dock1 mouse models allowed us to identify some of the key functions regulated by this gene in vivo. Much like its ortholog mbc, Dock1 is essential to embryonic development and regulates myoblast fusion. Our study also reveals important degree of conservation of the mechanisms that regulate fusion between species. In addition, DOCK1 acts downstream of the HER2 RTK in mammary epithelial cells where it contributes to the progression of breast cancer pathology and the formation of metastasis induced by this oncogene.

Page generated in 0.0278 seconds