• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 39
  • 29
  • 13
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 294
  • 294
  • 141
  • 95
  • 88
  • 86
  • 78
  • 78
  • 66
  • 57
  • 48
  • 43
  • 40
  • 37
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Generating Learning Algorithms: Hidden Markov Models as a Case Study

Szymczak, Daniel 04 1900 (has links)
<p>This thesis presents the design and implementation of a source code generator for dealing with Bayesian statistics. The specific focus of this case study is to produce usable source code for handling Hidden Markov Models (HMMs) from a Domain Specific Language (DSL).</p> <p>Domain specific languages are used to allow domain experts to design their source code from the perspective of the problem domain. The goal of designing in such a way is to increase the development productivity without requiring extensive programming knowledge.</p> / Master of Applied Science (MASc)
92

Supporting Heterogeneous Device Development and Communication

Chadha, Sanchit 10 January 2016 (has links)
To increase market penetration, mobile software makers support their popular applications on all major software platforms, which currently include Android, iOS, and Windows Phone. Although these platforms often offer a drastically different look and feel, cross-platform applications deliver the same core functionality to the end user. Maintaining and evolving such applications currently requires replicating all the changes across all supported variants, a laborious and intellectually taxing enterprise. The state-of-the-practice automated source translation tools fall short, as they are incapable of handling the structural and idiomatic differences of the software frameworks driving major mobile platforms. In addition, popular mobile applications increasingly make use of distributed resources. Certain domains, including social networking, productivity enhancement, and gaming, require different application instances to continuously exchange information with each other. The current state of the art in supporting communication across heterogeneous mobile devices requires the programmer to write platform-specific, low-level API calls that are hard not only to develop but also to evolve and maintain. This thesis reports on the findings of two complementary research activities, conducted with the goal of facilitating the development and communication across heterogeneous mobile devices: (1) a programming model and runtime support for heterogeneous device-to-device communication across mobile applications; (2) a source code recommendation system that synthesizes code snippets from web-based programming resources, based on the functionality written for Android or iOS and vice versa. The conceptual and practical advancements of this research have potential to benefit fellow researchers as well as mobile software developers and users. / Master of Science
93

Energy and Performance Models Enabling Design Space Exploration using Domain Specific Languages

Umar, Mariam 25 May 2018 (has links)
With the advent of exascale architectures maximizing performance while maintaining energy consumption within reasonable limits has become one of the most critical design constraints. This constraint is particularly significant in light of the power budget of 20 MWatts set by the U.S. Department of Energy for exascale supercomputing facilities. Therefore, understanding an application's characteristics, execution pattern, energy footprint, and the interactions of such aspects is critical to improving the application's performance as well as its utilization of the underlying resources. With conventional methods of analyzing performance and energy consumption trends scientists are forced to limit themselves to a manageable number of design parameters. While these modeling techniques have catered to the needs of current high-performance computing systems, the complexity and scale of exascale systems demands that large-scale design-space-exploration techniques are developed to enable comprehensive analysis and evaluations. In this dissertation we present research on performance and energy modeling of current high performance computing and future exascale systems. Our thesis is focused on the design space exploration of current and future architectures, in terms of their reconfigurability, application's sensitivity to hardware characteristics (e.g., system clock, memory bandwidth), application's execution patterns, application's communication behavior, and utilization of resources. Our research is aimed at understanding the methods by which we may maximize performance of exascale systems, minimize energy consumption, and understand the trade offs between the two. We use analytical, statistical, and machine-learning approaches to develop accurate, portable and scalable performance and energy models. We develop application and machine abstractions using Aspen (a domain specific language) to implement and evaluate our modeling techniques. As part of our research we develop and evaluate system-level performance and energy-consumption models that form part of an automated modeling framework, which analyzes application signatures to evaluate sensitivity of reconfigurable hardware components for candidate exascale proxy applications. We also develop statistical and machine-learning based models of the application's execution patterns on heterogeneous platforms. We also propose a communication and computation modeling and mapping framework for exascale proxy architectures and evaluate the framework for an exascale proxy application. These models serve as external and internal extensions to Aspen, which enable proxy exascale architecture implementations and thus facilitate design space exploration of exascale systems. / Ph. D.
94

Linguagem específica de domínio para abstração de solução de processamento de eventos complexos

DINIZ, Herbertt Barros Mangueira 04 March 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-10-31T12:04:21Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DissertacaoHerbertt_CIN_UFPE.pdf: 3162767 bytes, checksum: 3208dfce28e7404730479384c2ba99a0 (MD5) / Made available in DSpace on 2016-10-31T12:04:21Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DissertacaoHerbertt_CIN_UFPE.pdf: 3162767 bytes, checksum: 3208dfce28e7404730479384c2ba99a0 (MD5) Previous issue date: 2016-03-04 / Cada vez mais se evidencia uma maior escassez de recursos e uma disputa por espaços físicos, em decorrência da crescente e demasiada concentração populacional nas grandes cidades. Nesse âmbito, surge a necessidade de soluções que vão de encontro à iniciativa de “Cidades Inteligentes" (Smart Cities). Essas soluções buscam centralizar o monitoramento e controle, para auxiliar no apoio à tomada de decisão. No entanto, essas fontes de TICs formam estruturas complexas e geram um grande volume de dados, que apresentam enormes desafios e oportunidades. Uma das principais ferramentas tecnológicas utilizadas nesse contexto é o Complex Event Processing (CEP), o qual pode ser considerado uma boa solução, para lidar com o aumento da disponibilidade de grandes volumes de dados, em tempo real. CEPs realizam captação de eventos de maneira simplificada, utilizando linguagem de expressão, para definir e executar regras de processamento. No entanto, apesar da eficiência comprovada dessas ferramentas, o fato das regras serem expressas em baixo nível, torna o seu uso exclusivo para usuários especialistas, dificultando a criação de soluções. Com intuito de diminuir a complexidade das ferramentas de CEP, em algumas soluções, tem-se utilizado uma abordagem de modelos Model-Driven Development (MDD), a fim de se produzir uma camada de abstração, que possibilite criar regras, sem que necessariamente seja um usuário especialista em linguagem de CEP. No entanto, muitas dessas soluções acabam tornando-se mais complexas no seu manuseio do que o uso convencional da linguagem de baixo nível. Este trabalho tem por objetivo a construção de uma Graphic User Interface (GUI) para criação de regras de CEP, utilizando MDD, a fim de tornar o desenvolvimento mais intuitivo, através de um modelo adaptado as necessidades do usuário não especialista. / Nowadays is Increasingly evident a greater resources scarcity and competition for physical space, in result of growing up and large population concentration into large cities. In this context, comes up the necessity of solutions that are in compliance with initiative of smart cities. Those solutions seek concentrate monitoring and control, for help to make decisions. Although, this sources of information technology and communications (ITCs) forming complex structures and generates a huge quantity of data that represents biggest challenges and opportunities. One of the main technological tools used in this context is the Complex Event Processing (CEP), which may be considered a good solution to deal with increase of the availability and large volume of data, in real time. The CEPs realizes captation of events in a simple way, using expressive languages, to define and execute processing rules. Although the efficient use of this tools, the fact of the rules being expressed in low level, becomes your use exclusive for specialists, difficulting the creation of solutions. With the aim of reduce the complexity of the CEPs tools, solutions has used an approach of models Model-Driven Development (MDD), in order to produce an abstraction layer, that allows to create rules, without necessarily being a specialist in CEP languages. however, many this tools become more complex than the conventional low level language approach. This work aims to build a Graphic User Interface (GUI) for the creation of CEP rules, using MDD, in order to a more intuitive development, across of the adapted model how necessities of the non specialist users.
95

Modelom upravljani razvoj arhitekture Senzor Veb mreža / Model Driven Development of Sensor Web Networks Architecture

Vujović Vladimir 28 April 2016 (has links)
<p>Primjena Internet protokola u uređajima sa ograničenim resursima, dovodi do radikalne promjene Interneta i pojave potpuno novog koncepta pod nazivom Internet stv&acirc;ri &ndash; Internet of Things (IoT), čiji je jedan od osnovnih gradivnih elemenata Senzor Web (SW) čvor. SW čvor predstavlja elementarni &ldquo;resurs&rdquo; u SW mreži koja se po svojoj prirodi može posmatrati kao nestrukturirana kolekcija gradivnih elemenata koji se mogu dinamički orkestrirati u virtuelne klastere, odnosno u arhi-tekturu. Cilj disertacije predstavlja unapređenje procesa razvoja arhitekture sistema baziranih na SW mrežama uz oslonac na dinamičko generisanje servisnog sloja u svrhu povećanja produktivnosti, održivosti i smanjenja troškova razvoja. Pod unapređenjem procesa razvoja arhitekture smatra se analiza, integracija i prilagođavanje postojećih sistema i pristupa projektovanja arhitekture senzorskih mreža, kao i sistema baziranih na IoT konceptima. U tu svrhu definisana je arhitektura SW mreža, kreiran domenski specifičan jezik, interaktivni grafički editor i alat za automatsku transforma-ciju modela u implementacione klase. U sklopu teze izvršena je i eksperimentalna verifikacija predloženog modela i razvojnog okruženja, čime je dokazana njhova praktična primjena.</p> / <p>The use of Internet protocols in limited resources devices contributes to radical changes in the Internet and the emergence of an entirely new concept called the Internet of Things (IoT), consisted of the Sensor Web (SW) nodes as one of the basic building blocks. SW node is the elementary &quot;resource&quot; in the SW Network, which by their nature can be seen as an unstructured collection of blocks that can be dynamically orchestrated into the virtual cluster, or in the architecture. The aim of this thesis is to improve the process of developing a system archite-cture based on SW networks, relying on the dynamic generation of the service layer in order to increase productivity, sustainability and cost of development. The improvement of the architecture development process includes analysis, integration and adaptation of existing systems and sensor network architecture design approaches, as well as systems based on the IoT concepts. For this purpose, the archite-cture of the SW Network is defined, a domain-specific language has been created as well as interactive graphics editor and a tool for automatic transformation of models into the implementation class. As part of the dissertation, the experimental verification of the proposed model and the development environment were carried out demonstra-ting their practical application.</p>
96

A framework for domain-specific modeling on graph databases

Nikitchyn, Vitalii 12 1900 (has links)
La complexité du logiciel augmente tout le temps: les systèmes deviennent plus grands et plus complexes. La modélisation est un élément central de génie logicielle pour relever les défis de la complexité. Cependant, un défi majeur auquel est confronté le développement de logiciels axés sur les modèles est l'évolutivité des outils de modélisation avec une taille croissante de modèles. Certaines initiatives ont commencé à explorer la modélisation tout en stockant des modèles dans une base de données de graphes. Dans cette thèse, nous présentons NMF, un framework pour créer et éditer des modèles dans une base de données Neo4j élevée à l'abstraction du langage de modélisation. / Software complexity increases all the time: systems become larger and more complex. Modeling is a central part of software engineering to tackle challenges of complexity. However, a prominent challenge model-driven software development is facing is scalability of modeling tools with a growing size of models. Some initiatives started exploring modeling while storing models in a graph database. In this thesis, we present NMF, a framework to create and edit MDE models in a Neo4j database lifted to the abstraction of the modeling language.
97

Usability Issues in the User Interfaces of Privacy-Enhancing Technologies

LaTouche, Lerone W. 01 January 2013 (has links)
Privacy on the Internet has become one of the leading concerns for Internet users. These users are not wrong in their concerns if personally identifiable information is not protected and under their control. To minimize the collection of Internet users' personal information and help solve the problem of online privacy, a number of privacy-enhancing technologies have been developed. These so-called privacy-enhancing technologies still have usability issues in the user interfaces because Internet users do not have the choices required to monitor and control their personal data when released in online repositories. Current research shows a need exists to improve the overall usability of privacy-enhancing technology user interfaces. A properly designed privacy-enhancing technology user interface will give the Internet users confidence they can monitor and control all aspects of their personal data. Specific methods and criteria for assessing the usability of privacy-enhancing technology user interfaces either have not been developed or have not been widely published leading to the complexity of the user interfaces, which negatively affects the privacy and security of Internet users' personal data. This study focused on the development of a conceptual framework, which will provide a sound foundation for use in assessing the user interfaces of Web-based privacy-enhancing technologies for user-controlled e-privacy features. The study investigated the extent to which user testing and heuristic evaluation help identify the lack of user-controlled e-privacy features and usability problems in selected privacy-enhancing technology user interfaces. The outcome of this research was the development of a domain-specific heuristics checklist with criteria for the future evaluation of privacy-enhancing technologies' applications user interfaces. The results of the study show the domain-specific heuristics checklist generated more usability problems and a higher number of severe problems than the general heuristics. This suggests domain-specific heuristics can be used as a discount usability technique, which enforces the concept of usability that the heuristics are easy to use and learn. The domain-specific heuristics checklist should be of interest to privacy and security practitioners involved in the development of privacy-enhancing technologies' user interfaces. This research should supplement the literature on human-computer interaction, personal data protection, and privacy management.
98

Extending relational model transformations to better support the verification of increasingly autonomous systems

Callow, Glenn January 2013 (has links)
Over the past decade the capabilities of autonomous systems have been steadily increasing. Unmanned systems are moving from systems that are predominantly remotely operated, to systems that include a basic decision making capability. This is a trend that is expected to continue with autonomous systems making decisions in increasingly complex environments, based on more abstract, higher-level missions and goals. These changes have significant implications for how these systems should be designed and engineered. Indeed, as the goals and tasks these systems are to achieve become more abstract, and the environments they operate in become more complex, are current approaches to verification and validation sufficient? Domain Specific Modelling is a key technology for the verification of autonomous systems. Verifying these systems will ultimately involve understanding a significant number of domains. This includes goals/tasks, environments, systems functions and their associated performance. Relational Model Transformations provide a means to utilise, combine and check models for consistency across these domains. In this thesis an approach that utilises relational model transformation technologies for systems verification, Systems MDD, is presented along with the results of a series of trials conducted with an existing relational model transformation language (QVT-Relations). These trials identified a number of problems with existing model transformation languages, including poorly or loosely defined semantics, differing interpretations of specifications across different tools and the lack of a guarantee that a model transformation would generate a model that was compliant with its associated meta-model. To address these problems, two related solvers were developed to assist with realising the Systems MDD approach. The first solver, MMCS, is concerned with partial model completion, where a partial model is defined as a model that does not fully conform with its associated meta-model. It identifies appropriate modifications to be made to a partial model in order to bring it into full compliance. The second solver, TMPT, is a relational model transformation engine that prioritises target models. It considers multiple interpretations of a relational transformation specification, chooses an interpretation that results in a compliant target model (if one exists) and, optionally, maximises some other attribute associated with the model. A series of experiments were conducted that applied this to common transformation problems in the published literature.
99

Darwinian Domain-Generality: The Role of Evolutionary Psychology in the Modularity Debate

Lundie, Michael 03 May 2017 (has links)
Evolutionary Psychology (EP) tends to be associated with a Massively Modular (MM) cognitive architecture. I argue that EP favors a non-MM cognitive architecture. The main point of dispute is whether central cognition, such as abstract reasoning, exhibits domain-general properties. Partisans of EP argue that domain-specific modules govern central cognition, for it is unclear how the cognitive mind could have evolved domain-generality. In response, I defend a distinction between exogenous and endogenous selection pressures, according to which exogenous pressures tend to select for domain-specificity, whereas the latter, endogenous pressures, select in favor of domain-generality. I draw on models from brain network theory to motivate this distinction, and also to establish that a domain-general, non-MM cognitive architecture is the more parsimonious adaptive solution to endogenous pressures.
100

Développement logiciel orienté paradigme de conception : la programmation dirigée par la spécification / Leveraging software architectures to guide and verify the development of sense–compute–control applications

Cassou, Damien 17 March 2011 (has links)
Nombre d'applications ont pour comportement principal l'attente d'un événement venant d'un environnement extérieur, la préparation d'un résultat et l'exécution d'actions sur cet environnement. Les interfaces graphiques et les systèmes avioniques en sont des exemples. Le paradigme SCC, pour sense-compute-control, est particulièrement adapté à la description de ces applications. Le développement d'applications suivant ce paradigme est complexe à cause du manque de cadre conceptuel et d'outils de support.Cette thèse propose un cadre conceptuel dédié au paradigme SCC et se concrétise par un langage de description d'architectures. À partir d'une description dans ce langage, un framework de programmation peut être généré. Il guide l'implémentation d'une application grâce à un support dédié et vérifie que cette implémentation est conforme à l'architecture décrite. Les contributions de cette thèse sont évaluées suivant des critères d'expressivité, d'utilisabilité et de productivité. / Numerous applications have, as their main behavior, to wait for information coming from a foreign environment, to prepare a result, and to execute actions on this environment. Graphical user interfaces and avionic systems are two examples. The SCC paradigm, for Sense–Compute–Control, is dedicated to the description of such applications. Developing applications with this paradigm is made difficult by the lack of conceptual framework and tool support.This thesis proposes a conceptual framework dedicated to the SCC paradigm which is materialized by an architecture description language named DiaSpec. This language provides a framework to support the development of an SCC application, assigning roles to the stakeholders and providing separation of concerns. This thesis also proposes dedicated programming support. Indeed, from DiaSpec descriptions a dedicated programming framework is generated in a target language. This programming framework guides the implementation of an SCC application and raises the level of abstraction of this implementation with both high-level and dedicated mechanisms. This programming framework is designed to ensure conformance of the implementation to its architecture described in DiaSpec by leveraging the target language type system. Contributions of this thesis are evaluated through three criteria: expressiveness, usability and productivity.

Page generated in 0.0751 seconds