• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 40
  • 28
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 156
  • 156
  • 150
  • 63
  • 42
  • 42
  • 42
  • 42
  • 27
  • 26
  • 26
  • 26
  • 21
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Evropská měnová unie / European monetary union

Kužílek, Pavel January 2010 (has links)
The aim of this work is to analyze the success of European monetary integration and it's contribution to countries, who's economics are, no matter if for the long lasting difficulties or recent transformation, likely to be called hazardous. In the first part, the work concerns itself with the very conception of the idea of European monetary integration and it's development, over the final form of the project, it's accomplishment up till current problem and challenges. The second part is an analysis of chosen countries who belong in the category named above. With this countries I will try to analyze the effect that joining the monetary union had on their economy. In the end I'll summarize the acquired knowledge to evaluate the effect of the common currency on the chosen group of countries.
142

Produto interno bruto ajustado ambientalmente para Amazônia legal brasileira: uma análise de matriz de insumo-produto e matriz de contabilidade social / Environmental gross domestic product for Brazilian Legal Amazon: an analysis of input-output matrix and social accounting matrix.

Brasileiro, Andrea Castelo Branco 13 November 2012 (has links)
The purpose of this work was to present and apply an analytical tool to the flows of goods and income between economic agents and the environment that allows us to calculate the Environmental Gross Domestic Product (EGDP) for Brazilian Legal Amazon. In order to achieve this goal the Environmental Social Accounting Matrix (ESAM) was developed. The model was developed from the traditional Social Accounting Matrix, the Environmental Input-Output Analysis Models, and from the United Nations handbook on the System of Integrated Environmental and Economic Accountings. The EGDP was calculated from the Environmental Input-Output Analysis, since the unavailability of data did not allow the application of the model of ESAM. The flows between the economy and the environment considered were the emissions of green house gases (depreciation of natural capital) and the investment needed to return the air to the same quality it had before being polluted. The results showed that the inclusion of depreciation of natural capital in the Gross Domestic Product (GDP) and in the added value (AV) calculation for each industry of the Brazilian Legal Amazon Region diminished the AV significantly in the industries of cattle (235%), soybean (77%), and other activities of livestock and agricultural (24%). In the Rest of Brazil, the industries with the highest impact of depreciation of natural capital on AV were soybean (30%), cattle (15%) and sugarcane (13%). The total EGDP of the Brazilian Legal Amazon Region was 15% smaller than its total GDP, whereas this difference for the rest of Brazil was 1%. Considering that the GDP is a component of economic wellbeing, the results show a significant reduction in economic wellbeing due to green house gas emissions released into the air by economic activities, mainly due to land use changes. The Environmental Social Accounting Matrix Model is a useful tool to help decision makers since it offers an analytical instrument for economic behavior and the impacts of economic activities on the environment. / The purpose of this work was to present and apply an analytical tool to the flows of goods and income between economic agents and the environment that allows us to calculate the Environmental Gross Domestic Product (EGDP) for Brazilian Legal Amazon. In order to achieve this goal the Environmental Social Accounting Matrix (ESAM) was developed. The model was developed from the traditional Social Accounting Matrix, the Environmental Input-Output Analysis Models, and from the United Nations handbook on the System of Integrated Environmental and Economic Accountings. The EGDP was calculated from the Environmental Input-Output Analysis, since the unavailability of data did not allow the application of the model of ESAM. The flows between the economy and the environment considered were the emissions of green house gases (depreciation of natural capital) and the investment needed to return the air to the same quality it had before being polluted. The results showed that the inclusion of depreciation of natural capital in the Gross Domestic Product (GDP) and in the added value (AV) calculation for each industry of the Brazilian Legal Amazon Region diminished the AV significantly in the industries of cattle (235%), soybean (77%), and other activities of livestock and agricultural (24%). In the Rest of Brazil, the industries with the highest impact of depreciation of natural capital on AV were soybean (30%), cattle (15%) and sugarcane (13%). The total EGDP of the Brazilian Legal Amazon Region was 15% smaller than its total GDP, whereas this difference for the rest of Brazil was 1%. Considering that the GDP is a component of economic wellbeing, the results show a significant reduction in economic wellbeing due to green house gas emissions released into the air by economic activities, mainly due to land use changes. The Environmental Social Accounting Matrix Model is a useful tool to help decision makers since it offers an analytical instrument for economic behavior and the impacts of economic activities on the environment.
143

Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil

Cusinato, Rafael Tiecher January 2009 (has links)
Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra. / This thesis presents three essays on inflation forecasting and real-time data analysis in Brazil. By using a Phillips curve, the first essay presents an “evolutionary model” to forecast Brazilian inflation. The evolutionary model consists in a combination of a non-linear model (that is formed by a combination of three artificial neural networks - ANNs) and a linear model (that is also a benchmark for comparison purposes). Some parameters of the evolutionary model, including the combination weight, evolve throughout time according to adjustments defined by three algorithms that evaluate the out-of-sample errors. The ANNs were estimated by using a hybrid approach based on a genetic algorithm (GA) and on a Nelder-Mead simplex algorithm. In a 3, 6, 9 and 12 steps ahead out-of-sample forecasting experiment, the performance of the evolutionary model was compared to the performance of the benchmark linear model, according to root mean squared errors (RMSE) and to mean absolute error (MAE) criteria. The evolutionary model performed better than the linear model for all forecasting steps that were analyzed, according to both criteria. The second essay is motivated by recent literature on real-time data analysis, which has shown that several measures of economic activities go through important data revisions throughout time, implying important limitations to the use of these measures. We developed a GDP real-time data set to Brazilian economy and we analyzed the extent to which GDP growth and output gap series are revised over time. We showed that revisions to GDP growth (quarter-onquarter) are economic relevant, although the GDP growth revisions lose part of their importance as aggregation period increases (for example, four-quarter growth). To analyze the output gap revisions, we applied four detrending methods: the Hodrick-Prescott filter, the linear trend, the quadratic trend, and the Harvey-Clark model of unobservable components. It was shown that all methods had economically relevant magnitude of revisions. In a general way, both GDP data revisions and the low accuracy of end-of-sample output trend estimates were relevant sources of output gap revisions. The third essay is also a study about real-time data, but focused on industrial production (IP) data and on industrial production gap estimates. We showed that revisions to IP growth (month-on-month) and to IP quarterly moving average growth are economic relevant, although the IP growth revisions become less important as aggregation period increases (for example, twelve-month growth). To analyze the output gap revisions, we applied three detrending methods: the Hodrick-Prescott filter, the linear trend, and the quadratic trend. It was shown that all methods had economically relevant magnitude of revisions. In general, both IP data revisions and low accuracy of end-of-sample IP trend estimates were relevant sources of IP gap revisions, although the results suggest some prevalence of revisions originated from low accuracy of end-of-sample estimates.
144

A correlação entre jornada de trabalho e produtividade: uma perspectiva macroeconômica entre países

Gaspar, Willians Cesar Rocha 19 December 2017 (has links)
Submitted by Willians Gaspar (willians.gaspar@fgv.br) on 2018-01-22T16:33:59Z No. of bitstreams: 1 A Correlação entre Jornada de Trabalho e Produtividade - Uma Perspectiva Macroeconômica entre Países.pdf: 1651221 bytes, checksum: 10a95ba6074b04f5e4e0f6d88a9bf7b6 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2018-01-24T12:00:40Z (GMT) No. of bitstreams: 1 A Correlação entre Jornada de Trabalho e Produtividade - Uma Perspectiva Macroeconômica entre Países.pdf: 1651221 bytes, checksum: 10a95ba6074b04f5e4e0f6d88a9bf7b6 (MD5) / Made available in DSpace on 2018-01-29T18:55:15Z (GMT). No. of bitstreams: 1 A Correlação entre Jornada de Trabalho e Produtividade - Uma Perspectiva Macroeconômica entre Países.pdf: 1651221 bytes, checksum: 10a95ba6074b04f5e4e0f6d88a9bf7b6 (MD5) Previous issue date: 2017-12-19 / This research has as general objective to identify the variables or contributing factors to subsidize the discussion about reduction of the Working Day. As a specific objective, what is proposed is to verify how these same variables affect Productivity. For both objectives the macroeconomic aspects of the countries analyzed are considered. The criterion for selecting these countries is based on the "ranking" of the OECD and World Bank database for the year 2013, considering all the major world economies, which together represent 65.22% of global GDP. The data extracted refer to the "Gross Domestic Product - GDP at (PPP) - Purchasing Power Parity", which consists of the Gross Domestic Product, in international dollars, with a view to the comparative possibility of these economies by purchasing power parity (PPP). Other sources of information were considered as objects of analysis and observations, including the statistical series of secondary data from the International Labor Office (ILO), the International Monetary Fund (IMF), the United Nations (UNDP), the Brazilian Institute of Geography and Economics (IBGE), the Department of Statistics and Socioeconomic Studies (DIEESE) and the Institute of Economic and Applied Research (IPEA). The research was conducted at the macroeconomic level of the countries, with a longitudinal temporal cut between the years 2007 and 2013, in order to observe the behavior of these economies, including during the period of the 2008 global crisis. evolution of the historical series of GDP, revealing the size of the economy, GDP per capita, which captures wealth in relation to the population. Finally, we consider the labor productivity factor itself, which deals with the relationship between GDP, the number of people and the number of hours worked in the period. This research has as general objective to identify the variables or contributing factors to subsidize the discussion about reduction of the Working Day. As a specific objective, what is proposed is to verify how these same variables affect Productivity. For both objectives the macroeconomic aspects of the countries analyzed are considered. The criterion for selecting these countries is based on the "ranking" of the OECD and World Bank database for the year 2013, considering all the major world economies, which together represent 65.22% of global GDP. The data extracted refer to the "Gross Domestic Product - GDP at (PPP) - Purchasing Power Parity", which consists of the Gross Domestic Product, in international dollars, with a view to the comparative possibility of these economies by purchasing power parity (PPP). Other sources of information were considered as objects of analysis and observations, including the statistical series of secondary data from the International Labor Office (ILO), the International Monetary Fund (IMF), the United Nations (UNDP), the Brazilian Institute of Geography and Economics (IBGE), the Department of Statistics and Socioeconomic Studies (DIEESE) and the Institute of Economic and Applied Research (IPEA). The research was conducted at the macroeconomic level of the countries, with a longitudinal temporal cut between the years 2007 and 2013, in order to observe the behavior of these economies, including during the period of the 2008 global crisis. evolution of the historical series of GDP, revealing the size of the economy, GDP per capita, which captures wealth relative to the population. Finally, we consider the labor productivity factor itself, which deals with the relationship between GDP, the number of people and the number of hours worked in the period. Design/Methodology/ approach – The method is a qualitative research of the exploratory type, subsidized by quantitative correlation analysis, and the statistical design is directed to the verification of the degree of association between the variables: Working day and Labor productivity; that is, calculation and interpretation of the degree of correlation between these two variables. Findings – In the final conclusion of the study, it is inferred based on the theoretical reference and the analysis of the statistical data, if the reduction in the working day contributes to changes in productivity indexes, and just as other variables are considered in this discussion. Research limitations – No aspects of the national culture, climatic conditions and segregation of nations by percentage of participation in agriculture, industry, and services were considered in the composition of their economies, with a view to performing comparative analysis by subgroups. In addition, the sample set is restricted both in number of countries and in relation to the relatively short period between 2007 and 2013, in addition to being marked by an atypical event such as the global economic crisis of 2008. Practical contributions – To governments, organizations and workers to rethink the possible economic and social benefits, through public policies that allow greater flexibility in working hours, focusing on the competitive advantages and the balance of the relation between labor and capital, observing the legal aspects, productivity, quality of life, unit costs and the generation of jobs / Esta pesquisa tem como objetivo geral identificar as variáveis ou fatores contribuintes para subsidiar a discussão sobre redução da Jornada de Trabalho. Como objetivo específico, o que se propõe é verificar como essas mesmas variáveis afetam a Produtividade. Para ambos os objetivos são considerados os aspectos macroeconômicos dos países analisados. O critério para seleção desses países se fundamenta no “ranking” da base de dados da Organização para a Cooperação e Desenvolvimento Econômico – OCDE e do Banco Mundial, ano base 2013, considerando-se o conjunto das maiores economias mundiais, que, juntas, representam 65,22% do PIB global. Os dados extraídos são referentes ao “Gross Domestic Product – GDP at (PPP) - Purchasing Power Parity”, que consiste no Produto Interno Bruto, em dólares internacionais, com vistas à possibilidade comparativa destas economias pela paridade do poder de compra (PPC). Outras fontes de informações foram consideradas como objetos de análise e observações, incluindo-se as séries estatísticas de dados secundários do Instituto Internacional do Trabalho (OIT), do Fundo Monetário Internacional (FMI), das Nações Unidas (UNDP), do Instituto Brasileiro de Geografia e Economia (IBGE), do Departamento Intersindical de Estatística e Estudos Socioeconômicos (DIEESE) e do Instituto de Pesquisa Econômica e Aplicada (IPEA). A pesquisa foi conduzida no nível macroeconômico dos países, com corte temporal longitudinal entre os anos de 2007 a 2013, com o objetivo de observar-se o comportamento dessas economias, inclusive durante o período da crise mundial de 2008. Nesse sentido, foi avaliada a evolução da série histórica do PIB, como reveladora do tamanho da economia, o PIB per capita, que captura a riqueza em relação à população. Por último, considera-se o fator produtividade do trabalho propriamente dito, que trata da relação entre o PIB, o número de pessoas e o número de horas trabalhadas no período. Quanto ao método, trata-se de pesquisa qualitativa do tipo exploratória, subsidiada por análise quantitativa correlacional, sendo o delineamento estatístico direcionado para a verificação do grau de associação entre as varáveis: Jornada de trabalho e Produtividade do trabalho; ou seja, cálculo e interpretação do grau de correlação entre essas duas variáveis. Na conclusão final do trabalho, infere-se com base no referencial teórico e na análise dos dados estatísticos, se a redução na jornada de trabalho contribui para alterações nos índices de produtividade, e assim como outras variáveis são consideradas nesta discussão. Não foram considerados aspectos da cultura nacional, condições climáticas e segregação das nações por percentual de participação respectivamente em agricultura, indústria, e serviços, na composição de suas economias, visando realizar análise comparativa por subgrupos. Além disto o conjunto amostral é restrito, tanto em número de países, quanto em relação ao período, relativamente curto, entre 2007 e 2013, além de ter sido marcado por fato atípico como a crise econômica mundial de 2008. Á governos, organizações e trabalhadores para repensarem os eventuais benefícios econômicos e sociais, através de políticas públicas que permitam maior flexibilização das jornadas de trabalho, com foco nas vantagens competitivas e no equilíbrio da relação entre mão de obra e capital, observando os aspectos legais, a produtividade, a qualidade de vida, os custos unitários e a geração de empregos
145

Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil

Cusinato, Rafael Tiecher January 2009 (has links)
Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra. / This thesis presents three essays on inflation forecasting and real-time data analysis in Brazil. By using a Phillips curve, the first essay presents an “evolutionary model” to forecast Brazilian inflation. The evolutionary model consists in a combination of a non-linear model (that is formed by a combination of three artificial neural networks - ANNs) and a linear model (that is also a benchmark for comparison purposes). Some parameters of the evolutionary model, including the combination weight, evolve throughout time according to adjustments defined by three algorithms that evaluate the out-of-sample errors. The ANNs were estimated by using a hybrid approach based on a genetic algorithm (GA) and on a Nelder-Mead simplex algorithm. In a 3, 6, 9 and 12 steps ahead out-of-sample forecasting experiment, the performance of the evolutionary model was compared to the performance of the benchmark linear model, according to root mean squared errors (RMSE) and to mean absolute error (MAE) criteria. The evolutionary model performed better than the linear model for all forecasting steps that were analyzed, according to both criteria. The second essay is motivated by recent literature on real-time data analysis, which has shown that several measures of economic activities go through important data revisions throughout time, implying important limitations to the use of these measures. We developed a GDP real-time data set to Brazilian economy and we analyzed the extent to which GDP growth and output gap series are revised over time. We showed that revisions to GDP growth (quarter-onquarter) are economic relevant, although the GDP growth revisions lose part of their importance as aggregation period increases (for example, four-quarter growth). To analyze the output gap revisions, we applied four detrending methods: the Hodrick-Prescott filter, the linear trend, the quadratic trend, and the Harvey-Clark model of unobservable components. It was shown that all methods had economically relevant magnitude of revisions. In a general way, both GDP data revisions and the low accuracy of end-of-sample output trend estimates were relevant sources of output gap revisions. The third essay is also a study about real-time data, but focused on industrial production (IP) data and on industrial production gap estimates. We showed that revisions to IP growth (month-on-month) and to IP quarterly moving average growth are economic relevant, although the IP growth revisions become less important as aggregation period increases (for example, twelve-month growth). To analyze the output gap revisions, we applied three detrending methods: the Hodrick-Prescott filter, the linear trend, and the quadratic trend. It was shown that all methods had economically relevant magnitude of revisions. In general, both IP data revisions and low accuracy of end-of-sample IP trend estimates were relevant sources of IP gap revisions, although the results suggest some prevalence of revisions originated from low accuracy of end-of-sample estimates.
146

Banking sector, stock market development and economic growth in Zimbabwe : a multivariate causality framework

Dzikiti, Weston 02 1900 (has links)
The thesis examined the comprehensive causal relationship between the banking sector, stock market development and economic growth in a multi-variate framework using Zimbabwean time series data from 1988 to 2015. Three banking sector development proxies (total financial sector credit, banking credit to private sector and broad money M3) and three stock market development proxies (stock market capitalization, value traded and turnover ratio) were employed to estimate both long and short run relationships between banking sector, stock market and economic growth in Zimbabwe. The study employs the vector error correction model (VECM) as the main estimation technique and the autoregressive distributed lag (ARDL) approach as a robustness testing technique. Results showed that in Zimbabwe a significant causal relationship from banking sector and stock market development to economic growth exists in the long run without any feedback effects. In the short run, however, a negative yet statistically significant causal relationship runs from economic growth to banking sector and stock market development in Zimbabwe. The study further concludes that there is a unidirectional causal relationship running from stock market development to banking sector development in Zimbabwe in both short and long run periods. Nonetheless this relationship between banking sector and stock markets has been found to be more significant in the short run than in the long run. The thesis adopts the complementary view and recommends for the spontaneity implementation of monetary policies as the economy grows. Monetary authorities should thus formulate policies to promote both banks and stock markets with corresponding growth in Zimbabwe’s economy. / Business Management / M. Com. (Business Management)
147

The effect and impact of national and international law on foreign investment in South Africa

Mhlongo, Lindelwa Beaulender 04 April 2018 (has links)
Foreign Direct Investment (FDI) is one of the factors that can influence the growth and development of the economy of a country, but on the other hand, it could have a negative effect if not regulated properly by the host country. States must ensure that FDI is properly regulated in the best interests of the country and the foreign investor itself. South Africa has reviewed its foreign investment legal framework and during this process, it terminated most of its bilateral investment treaties that previously regulated foreign investment in the country. In turn, it introduced the Protection of Protection of Investment Act that regulates both domestic and foreign investment. This study analyses the way in which national and international investment law affect FDI inflow and the economy of South Africa. The study also deals with the determinants of foreign investment in the host country and the extent to which they have an influence on the inflow of FDI. / Public, Constitutional and International Law / LL. M.
148

Ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil

Cusinato, Rafael Tiecher January 2009 (has links)
Esta tese apresenta três ensaios sobre previsão de inflação e análise de dados em tempo real no Brasil. Utilizando uma curva de Phillips, o primeiro ensaio propõe um “modelo evolucionário” para prever inflação no Brasil. O modelo evolucionário consiste em uma combinação de um modelo não-linear (que é formado pela combinação de três redes neurais artificiais – RNAs) e de um modelo linear (que também é a referência para propósitos de comparação). Alguns parâmetros do modelo evolucionário, incluindo os pesos das combinações, evoluem ao longo do tempo segundo ajustes definidos por três algoritmos que avaliam os erros fora-da-amostra. As RNAs foram estimadas através de uma abordagem híbrida baseada em um algoritmo genético (AG) e em um algoritmo simplex de Nelder-Mead. Em um experimento de previsão fora-da-amostra para 3, 6, 9 e 12 passos à frente, o desempenho do modelo evolucionário foi comparado ao do modelo linear de referência, segundo os critérios de raiz do erro quadrático médio (REQM) e de erro absoluto médio (EAM). O desempenho do modelo evolucionário foi superior ao desempenho do modelo linear para todos os passos de previsão analisados, segundo ambos os critérios. O segundo ensaio é motivado pela recente literatura sobre análise de dados em tempo real, que tem mostrado que diversas medidas de atividade econômica passam por importantes revisões de dados ao longo do tempo, implicando importantes limitações para o uso dessas medidas. Elaboramos um conjunto de dados de PIB em tempo real para o Brasil e avaliamos a extensão na qual as séries de crescimento do PIB e de hiato do produto são revisadas ao longo do tempo. Mostramos que as revisões de crescimento do PIB (trimestre/trimestre anterior) são economicamente relevantes, embora as revisões de crescimento do PIB percam parte da importância à medida que o período de agregação aumenta (por exemplo, crescimento em quatro trimestres). Para analisar as revisões do hiato do produto, utilizamos quatro métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear, a tendência quadrática, e o modelo de Harvey-Clark de componentes não-observáveis. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados do PIB como a baixa precisão das estimativas de final-de-amostra da tendência do produto mostraram-se fontes relevantes das revisões de hiato do produto. O terceiro ensaio é também um estudo de dados em tempo real, mas que analisa os dados de produção industrial (PI) e as estimativas de hiato da produção industrial. Mostramos que as revisões de crescimento da PI (mês/mês anterior) e da média móvel trimestral são economicamente relevantes, embora as revisões de crescimento da PI tornem-se menos importantes à medida que o período de agregação aumenta (por exemplo, crescimento em doze meses). Para analisar as revisões do hiato da PI, utilizamos três métodos de extração de tendência: o filtro de Hodrick-Prescott, a tendência linear e a tendência quadrática. Todos os métodos apresentaram revisões de magnitudes economicamente relevantes. Em geral, tanto a revisão de dados da PI como a baixa precisão das estimativas de final-de-amostra da tendência da PI mostraram-se fontes relevantes das revisões de hiato da PI, embora os resultados sugiram certa predominância das revisões provenientes da baixa precisão de final-de-amostra. / This thesis presents three essays on inflation forecasting and real-time data analysis in Brazil. By using a Phillips curve, the first essay presents an “evolutionary model” to forecast Brazilian inflation. The evolutionary model consists in a combination of a non-linear model (that is formed by a combination of three artificial neural networks - ANNs) and a linear model (that is also a benchmark for comparison purposes). Some parameters of the evolutionary model, including the combination weight, evolve throughout time according to adjustments defined by three algorithms that evaluate the out-of-sample errors. The ANNs were estimated by using a hybrid approach based on a genetic algorithm (GA) and on a Nelder-Mead simplex algorithm. In a 3, 6, 9 and 12 steps ahead out-of-sample forecasting experiment, the performance of the evolutionary model was compared to the performance of the benchmark linear model, according to root mean squared errors (RMSE) and to mean absolute error (MAE) criteria. The evolutionary model performed better than the linear model for all forecasting steps that were analyzed, according to both criteria. The second essay is motivated by recent literature on real-time data analysis, which has shown that several measures of economic activities go through important data revisions throughout time, implying important limitations to the use of these measures. We developed a GDP real-time data set to Brazilian economy and we analyzed the extent to which GDP growth and output gap series are revised over time. We showed that revisions to GDP growth (quarter-onquarter) are economic relevant, although the GDP growth revisions lose part of their importance as aggregation period increases (for example, four-quarter growth). To analyze the output gap revisions, we applied four detrending methods: the Hodrick-Prescott filter, the linear trend, the quadratic trend, and the Harvey-Clark model of unobservable components. It was shown that all methods had economically relevant magnitude of revisions. In a general way, both GDP data revisions and the low accuracy of end-of-sample output trend estimates were relevant sources of output gap revisions. The third essay is also a study about real-time data, but focused on industrial production (IP) data and on industrial production gap estimates. We showed that revisions to IP growth (month-on-month) and to IP quarterly moving average growth are economic relevant, although the IP growth revisions become less important as aggregation period increases (for example, twelve-month growth). To analyze the output gap revisions, we applied three detrending methods: the Hodrick-Prescott filter, the linear trend, and the quadratic trend. It was shown that all methods had economically relevant magnitude of revisions. In general, both IP data revisions and low accuracy of end-of-sample IP trend estimates were relevant sources of IP gap revisions, although the results suggest some prevalence of revisions originated from low accuracy of end-of-sample estimates.
149

DOPAD VÝVOJE EKONOMIKY V LETECH 2005 - 2012 NA POSTAVENÍ ZNEVÝHODNĚNÝCH SKUPIN OBYVATELSTVA NA ČESKÉM TRHU PRÁCE / Impact of economic development in 2005-2012 on the status disadvantaged groups on czech labour market

Svobodová, Lucie January 2013 (has links)
The paper examines the status of selected disadvantaged groups in the Czech labour market in 2005-2012. The main goal of this paper is to test the hypothesis that these disadvantaged groups respond to changes in Czech GDP more sensitive than the general unemployment rate. This thesis describes the development of general unemployment rate and selected disadvantaged groups in studied period. The main hypothesis is verified using regression analysis performed on the time series. Empirical investigation, realized in this work, confirm this hypothesis in a group of graduates and persons at age 15-24. For persons with disabilities and persons at age 50-74 failed to confirm the hypothesis.
150

Ekonomika Rakouska a komparace s ČR / The economy of Austria and its comparison to the Czech Republic

Němcová, Martina January 2014 (has links)
The aim of the thesis is to describe the economy of Austria from the perspective of basic macroeconomic indicators and their development from the early 1990s to the present. These indicators are compared with the selected countries, especially with Germany, the United States of America and the Czech Republic. As Austria is a small open economy, international trade and external economic balance are important topics to be mentioned. Austria is compared to the Czech Republic. Both countries are not only geographically close to each other, they also have a common history and cultural traditions. Therefore, a comparison of their pension systems, healthcare and ethnic compositions is included in this thesis.

Page generated in 0.135 seconds