• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 639
  • 175
  • 156
  • 57
  • 40
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 1512
  • 205
  • 188
  • 179
  • 161
  • 150
  • 141
  • 106
  • 100
  • 99
  • 93
  • 92
  • 88
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Alterations of the Monoaminergic Systems by Sustained Triple Reuptake Inhibition

Jiang, Jojo L 21 August 2012 (has links)
Recent approaches in depression therapeutics include triple reuptake inhibitors, drugs that target three monoamine systems. Using in vivo electrophysiological and microdialysis techniques, the effects of 2- and 14-day treatments of escitalopram, nomifensine and the co-administration of these two drugs (TRI) were examined in male Sprague-Dawley rats. Short- and long-term TRI administration decreased NE firing and had no effect on DA neurons. Normal 5-HT firing rates were maintained after 2-day TRI administration compared to the robust inhibitory action of selective serotonin reuptake inhibitors (SSRIs). Escitalopram treatment enhanced the tonic activation of the 5-HT1A receptors given the increase in firing observed following WAY100635 administration. Nomifensine treatment enhanced tonic activation of the α2–adrenoceptors following idazoxan administration. TRI treatment caused a robust increase in extracellular DA levels that was in part mediated by a serotonergic contribution. Therapeutic effects of the drugs examined in this study may be due to the enhancement of 5-HT, NE and/or DA neurotransmission.
372

Pyramidal cell diversity in the rat prefrontal cortex : electrophysiology, dopamine modulation and morphology

Bartsch, Ullrich January 2011 (has links)
The prefrontal cortex (PFC) is critically involved in many higher cognitive functions such as goaldirected behaviour, affective behaviour and especially working memory. In vivo extracellular recordings of PFC neural activity during working memory tasks show high variety in observed spiking patterns. These complex dynamics are critically shaped by intrinsic, synaptic and structural parameters of respective prefrontal networks. Moreover, dopamine (DA) is crucial for correct functioning of the PFC during working memory tasks. DA modulates a number of synaptic and intrinsic biophysical properties of single neurons, in particular deep layer pyramidal cells, which represent the major output neurons of the PFC. Despite a high variability of cortical pyramidal cell firing patterns, and somatodendritic morphology, no study has yet systematically examined correlations between intrinsic properties, morphological features and dopaminergic modulation of intrinsic properties. This study investigated properties of deep layer pyramidal cells through whole cell patch clamp in acute brain slices of the adult rat PFC. Cells were characterised physiologically through a variety of stimulation protocols surveying different time scales and wide intensity ranges, while all fast synaptic transmission was blocked. Furthermore the same catalogue of stimuli was recorded whilst applying specific DA receptor agonists to elucidate effects of DA receptor activation on intrinsic properties. All recorded cells were injected with biocytin and dendritic morphology was reconstructed from confocal image stacks of fluorescently labelled neurons. From the resulting data a set of characteristic variables were defined and a combination of principal components analysis and hierarchical cluster analysis was used to identify similarity between recorded cells in different parameter spaces spanned by intrinsic properties, intrinsic properties under dopaminergic modulation and morphology, respectively. The analysis presents evidence for distinct subpopulations within prefrontal deep layer pyramidal cells, as seen by clustering of recorded cells in these high dimensional parameter spaces. These subpopulations also show distinct input-output relationships, bearing implications for computational functions of these subpopulations. Furthermore, this study presents for the first time evidence of subpopulation specific DA effects in deep layer pyramidal cells. The quantitative analysis of somatodendritic morphology confirms physiological subpopulations and identifies characteristic morphological features of deep layer pyramidal cells. Moreover, cluster observed in different parameter spaces overlap, leading to a definition of subpopulations that concurs with previously described prefrontal pyramidal cell types. In conclusion, the results presented provide some deeper insight into fundamental principles of information processing in prefrontal pyramidal cells under the influence of dopamine.
373

Models and metaphors in neuroscience : the role of dopamine in reinforcement learning as a case study

Kyle, Robert January 2012 (has links)
Neuroscience makes use of many metaphors in its attempt to explain the relationship between our brain and our behaviour. In this thesis I contrast the most commonly used metaphor - that of computation driven by neuron action potentials - with an alternative view which seeks to understand the brain in terms of an agent learning from the reward signalled by neuromodulators. To explore this reinforcement learning model I construct computational models to assess one of its key claims — that the neurotransmitter dopamine signals unexpected reward, and that this signal is used by the brain to learn control of our movements and drive goal-directed behaviour. In this thesis I develop a selection of computational models that are motivated by either theoretical concepts or experimental data relating to the effects of dopamine. The first model implements a published dopamine-modulated spike timing-dependent plasticity mechanism but is unable to correctly solve the distal reward problem. I analyse why this model fails and suggest solutions. The second model, more closely linked to the empirical data attempts to investigate the relative contributions of firing rate and synaptic conductances to synaptic plasticity. I use experimental data to estimate how model neurons will be affected by dopamine modulation, and use the resulting computational model to predict the effect of dopamine on synaptic plasticity. The results suggest that dopamine modulation of synaptic conductances is more significant than modulation of excitability. The third model demonstrates how simple assumptions about the anatomy of the basal ganglia, and the electrophysiological effects of dopamine modulation can lead to reinforcement learning like behaviour. The model makes the novel prediction that working memory is an emergent feature of a reinforcement learning process. In the course of producing these models I find that both theoretically and empirically based models suffer from methodological problems that make it difficult to adequately support such fundamental claims as the reinforcement learning hypothesis. The conclusion that I draw from the modelling work is that it is neither possible, nor desirable to falsify the theoretical models used in neuroscience. Instead I argue that models and metaphors can be valued by how useful they are, independently of their truth. As a result I suggest that we ought to encourage a plurality of models and metaphors in neuroscience. In Chapter 7 I attempt to put this into practice by reviewing the other transmitter systems that modulate dopamine release, and use this as a basis for exploring the context of dopamine modulation and reward-driven behaviour. I draw on evidence to suggest that dopamine modulation can be seen as part of an extended stress response, and that the function of dopamine is to encourage the individual to engage in behaviours that take it away from homeostasis. I also propose that the function of dopamine can be interpreted in terms of behaviourally defining self and non-self, much in the same way as inflammation and antibody responses are said to do in immunology.
374

The influence of dopamine on personality in the Mediterranean field cricket (Gryllus bimaculatus)

Lundgren, Kristoffer January 2017 (has links)
For some behavior there are consistent differences between individuals within a population, which is called animal personality. Across species, ranging from insects to mammals, personality has been described along behavioral gradients like activity, exploration, boldness and aggression. Monoamines such as dopamine have been shown to be essential for modulating animal behavior and could therefore be important also in explaining variation in animal personality. Supporting this, the dopaminergic system affect activity (in Confused flour beetles), and aggression (in Mediterranean field crickets). However, the causality and effect of dopamine on these behaviors, and also other behavioral traits used to describe personality is currently less explored. This study experimentally investigated how increased level of dopamine affects activity, boldness, exploration and aggression in Mediterranean field crickets (Gryllus bimaculatus). I show that dopamine manipulation had no effects on measured behavior. These results indicate that increased dopamine levels do not affect the scored personality traits in Mediterranean field crickets. The causality and generality of the relationship between dopamine and behavior used to score variation in personality is thus not clear in this species.
375

Relations entre les dyskinésies L-dopa induites et le récepteur D1 de la dopamine dans les neurones striataux : étude expérimentale et perspectives en thérapeutique / Relationship between L-dopa induced dyskinesia and the dopamine D1 receptor in striatal neurons : experimental study and perspectives in therapeutic

Berthet, Amandine 30 November 2010 (has links)
Mes travaux de thèse concernent le rôle du récepteur D1 de la dopamine dans les dyskinésies L-dopa induites, effets secondaires extrêmement handicapants du traitement de la maladie de Parkinson. En condition de dénervation striatale mimant l’environnement de la maladie de Parkinson, le traitement chronique par la L-dopa entraine des altérations majeures du trafic intraneuronal et de la signalisation du récepteur D1 de la dopamine dans les principaux neurones cibles de la dopamine, les neurones épineux de taille moyenne du striatum. Il existe en particulier une hypersensibilisation des récepteurs D1 dans les neurones striataux, avec une abondance accrue à la membrane plasmique et une diminution du niveau d’expression de la protéine GRK6 (Protéine kinase des Récepteurs Couplés aux Protéines G 6), un des acteurs clefs des phénomènes de désensibilisation, en relation directe avec l’apparition des dyskinésies.C’est dans ce contexte que se situe mon travail de thèse qui a eu pour objectif de mettre à profit et/ou de développer différents modèles expérimentaux et outils « in vivo » et « in vitro ». Nous avons associé des techniques d’imagerie cellulaire et tissulaire à des approches comportementales, afin d’explorer certains des événements cellulaires et moléculaires à l’échelle du neurone striatal et des réseaux neuronaux, reliant le niveau d’expression du récepteur D1, sa compartimentation cellulaire, son trafic intraneuronal et les dyskinésies ou des conditions pharmacologiques équivalentes.Nous avons confirmé dans le modèle du rat lésé unilatéralement à la 6-OHDA, traité par la L-dopa et développant des mouvements anormaux analogues aux dyskinésies chez l’homme, que le récepteur D1 est anormalement abondant à la membrane plasmique des neurones du striatum, alors qu’il devrait être internalisé après stimulation par son ligand naturel, la dopamine. Nous avons mis en évidence que les mécanismes d’internalisation après stimulation par un agoniste restent néanmoins fonctionnels. Après administration de l’agoniste D1, chez les animaux dyskinétiques, l’abondance des récepteurs D1 augmente dans les compartiments notamment impliqués dans les mécanismes d’internalisation et de transport (vésicules) et de dégradation (corps multivésiculaires). Nous avons apporté une explication possible à cette abondance anormale et à ce défaut d’internalisation, en montrant qu’ils pourraient être dus à une hétérodimérisation entre les récepteurs D1 et D3. La co-activation des récepteurs D1 et D3 par la L-dopa favoriserait l’ancrage du récepteur D1 à la membrane plasmique des neurones striataux.Dans ce cadre, l’abord de l’étude de l’implication du protéasome dans la régulation de l’expression du récepteur D1 de la dopamine nous a semblé particulièrement important, sur la base des premières études soulignant l’implication de ce système catalytique dans le contrôle de l’activité et du métabolisme des récepteurs aux neurotransmetteurs. Nous avons révélé pour la première fois des liens entre l’activité catalytique du protéasome et la dynamique intraneuronale du récepteur D1 et plus particulièrement nous avons montré que son activité chymotrypsine-like est réduite de façon spécifique dans le striatum d’animaux dyskinétiques, comme une conséquence directe d’une déplétion en dopamine associée à une hyperstimulation dopaminergique.Nous avons testé en situation expérimentale une stratégie « thérapeutique » nouvelle en restaurant le mécanisme de désensibilisation homologue du récepteur D1 de la dopamine, par correction du déficit de la kinase GRK6 par transfert du gène correspondant via l’injection intrastriatale d’un vecteur lentiviral. Nous avons montré que cette approche permet de réduire considérablement la sévérité des dyskinésies dans les modèles rat et primate non-humain, analogues des dyskinésies chez l’homme et qu’elle restaure les effets thérapeutiques de la L-dopa. Ces effets sont la conséquence de la restauration des mécanismes de désensibilisation homologue : la surexpression de GRK6 entraîne l’internalisation spécifique des récepteurs D1. L’ensemble de nos résultats s’inscrit dans une démarche de recherche translationnelle menée depuis plusieurs années au laboratoire allant de la cellule au patient, avec pour but de transposer la compréhension des données expérimentales concernant les anomalies de l’expression du récepteur D1 de la dopamine en stratégies thérapeutiques dans les dyskinésies L-dopa induites. Nos investigations montrent qu’il est possible d’agir sur l’expression du récepteur D1 à la membrane plasmique des neurones striataux de manière indirecte, en manipulant trois co-activateurs de son métabolisme, pour espérer réduire « in fine » la sévérité des dyskinésies. / In my thesis work, I studied the role of dopamine D1 receptor in L-dopa induced dyskinesia, a debilitating complication of Parkinson's disease’s treatment. In condition of striatal denervation, that mimics the Parkinson's disease environment, chronic treatment with L-dopa leads to major alterations of intraneuronal trafficking and dopamine D1 receptor signaling in the major target of dopamine neurons, the striatal medium spiny neurons. In particularly, there is a D1 receptor hypersensitivity in striatal neurons, with an increased abundance of D1 receptor at the plasma membrane and a decreased level of GRK6 protein expression, a key actor in desensitization mechanism, directly related with the apparition of dyskinesia.In this context, I used different in vitro and in vivo experimental models and tools. I have associated cell and tissue imaging techniques and behavioural approaches in order to explore cellular and molecular events in striatal neuron and neuronal networks, linking the D1 receptor expression level, its cellular compartmentalization, its intraneuronal trafficking and the dyskinesia behaviour or equivalent pharmacological conditions.We confirmed in the rat analog of L-dopa-induced dyskinesia, i.e., the L-dopa-induced abnormal involuntary movements in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned animals, that D1 receptor is abnormally abundant in the plasma membrane of neurons in the striatum, whereas it should be internalized after stimulation by its natural ligand, the dopamine. We showed that nevertheless the internalization mechanisms after agonist stimulation remains functional. After D1 agonist administration in dyskinetic animals, D1 receptor abundance increases in the cytoplasmic compartments involved in the internalization and transport (vesicles) and degradation (multivesicular bodies) mechanisms. Based on D3 receptor antagonist experiment, we propose that this abnormal abundance and this lack of internalization could be due to heterodimerization between the D1 and D3 receptors. D1 and D3 receptors co-activation by L-dopa might anchor D1 receptor at the plasma membrane of striatal neurons.In this context, analysis of proteasome involvement in the regulation of dopamine D1 receptor expression seemed particularly important, on the basis of the first studies underlying proteasome involvement in the activity and metabolism of neurotransmitter receptors. We demonstrated for the first time links between the proteasomal catalytic activity and D1 receptor intraneuronal dynamics and more particularly we showed that the proteasome chymotrypsin-like activity is reduced specifically in the striatum of dyskinetic animals, as a direct consequence of dopamine depletion associated with dopaminergic hyperstimulation.We tested in experimental condition, a new "therapeutic"strategy in order to restore the dopamine D1 receptor homologous desensitization mechanism, correcting the GRK6 kinase deficit by gene transfer through the intrastriatal injection of a lentiviral vector. We showed that this approach reduces significantly the dyskinesia severity in rat and non-human primate models and restores the L-dopa therapeutic effects. These effects are a consequence of the homologous desensitization mechanisms restoration : indeed GRK6 overexpression provokes specific D1 receptor internalization.Our results are part of a translational research conducted over several years in the laboratory from cell to patient, in order to translate our increased understanding of D1 receptor function abnormalities into therapeutic strategies for L-dopa induced dyskinesia. Our investigations show that it is possible to act on D1 receptor expression at the plasma membrane of striatal neurons via various routes, all resulting into diminished dyskinesia severity.
376

Étude du mécanisme de la libération somatodendritique de dopamine

Fortin, Gabriel January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
377

Étude de la caractérisation de récepteurs à la sérotonine et dopamine potentiellement impliqués dans la mémoire et l'apprentissage d'Aplysia californica

Barbas, Demian January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
378

L'effet de la quétiapine sur le phénomène de récompense

Lapointe, Stéphanie January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
379

The Role of Substance P in Opioid Induced Reward

Sandweiss, Alexander Jordan, Sandweiss, Alexander Jordan January 2016 (has links)
Chronic pain affects approximately 100 million Americans. Opioids are the mainstay therapy for the treatment of chronic pain. While physicians and patients alike are apprehensive about using opioids due to their side effects including respiratory depression and addiction, 259 million opioid prescriptions were written in 2012. Although opioids are the most efficacious available analgesics, they increase both positive and negative reinforcement, ultimately leading to addiction. The pro-nociceptive neurotransmitter, Substance P (SP) and its corresponding receptor (NK₁R), are not only found on pain pathways to promote pain but also found in the ventral tegmental area associated with dopamine neurons. Studies have shown that Substance P can potentiate positive reinforcement of opiates and may play a role in opioid reward. Here using in vivo microdialysis, we show that systemic morphine significantly increases SP release in the VTA, an effect mediated by ventral midbrain GABAergic neurons. Substance P administered to the VTA results in a significant increase in dopamine release in the nucleus accumbens (NAc). Using CRISPR-Cas9 knockdown of NK₁R in the VTA we prevent the induction of opiate reward as tested using a conditioned place preference paradigm (CPP). Finally, we developed a novel opioid agonist/NK₁R antagonist bifunctional compound, TY032, which inhibits acute and chronic pain in male rats. Importantly, TY032 microinjection into the VTA did not increase extracellular dopamine release in the NAc and did not produce a positive CPP score. These data indicate dual targeting of the dopamine reward circuitry and pain pathways with multifunctional opioid-NK₁R compounds may be an effective strategy in developing future analgesics that lack the potential for abuse.
380

Étude du mécanisme de facilitation de la libération de dopamine par la neurotensine

Fawaz, Charbel Simon January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0399 seconds