• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 641
  • 175
  • 156
  • 57
  • 40
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 1515
  • 206
  • 188
  • 180
  • 161
  • 150
  • 141
  • 106
  • 100
  • 99
  • 93
  • 92
  • 88
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Spinal Mechanisms of Hyperalgesic Priming

Kim, JiYoung January 2015 (has links)
The mechanisms that mediate the maintenance of chronic pain states are poorly understood, but elucidation of such could yield insight into how pain becomes chronic and how the process can potentially be reversed. This thesis investigated the role of ascending and descending spinal dorsal horn circuitry and interneurons in the plasticity that mediates a transition to pathological pain plasticity using hyperalgesic priming model. The results showed that, while dorsal horn neurokinin 1 receptor-positive neurons or descending serotonergic neurons mediated IL-6- and carrageenan-induced acute mechanical hypersensitivity, they were not required for PGE₂-induced mechanical hypersensitivity. In stark contrast, ablation of dopaminergic neurons did interrupt the IL-6- and carrageenan-induced mechanical hypersensitivity, but the subsequent PGE₂ injection failed to cause mechanical hypersensitivity - thereby reflecting that primed state plasticity is driven by differential mechanisms. In addition, the pharmacological antagonism of spinal dopamine D1/D5 receptors reversed priming and its agonism induced mechanical hypersensitivity exclusively in primed mice, which suggests dopaminergic control of pathological pain plasticity in a D1/D5-dependent manner. Moreover, in a primed state, changes to spinal dorsal horn GABA pharmacology were accompanied by upregulation of neuroligin 2 mRNA and protein expression. These findings 1) indicate a novel role for descending dopaminergic neurons in the maintenance of pathological pain plasticity, and 2) point to the inhibitory synaptic expression of neuroligin-2 as the spinal determinants of this type of pain plasticity.
432

Ανίχνευση του μεταφορέα της ντοπαμίνης στην παρεγκεφαλίδα μυός

Λάμπας, Ευάγγελος 26 October 2009 (has links)
Στο κεντρικό νευρικό σύστημα (ΚΝΣ), η ντοπαμίνη ελέγχει σημαντικές φυσιολογικές λειτουργίες όπως η έκκριση ορμονών, η ρύθμιση της κίνησης, γνωστικές πορείες και περίπλοκες συμπεριφορές που έχουν σχέση με το συναίσθημα και την ανταμοιβή. Η επαναπρόσληψη της ντοπαμίνης διαμέσου του μεταφορέα της νευρωνικής πλασματικής μεμβράνης (DAT) είναι σημαντική για τη διατήρηση της ομοιόστασης της στο ΚΝΣ. Πιστεύεται ότι ο DAT ελέγχει την ένταση και τη διάρκεια της ντοπαμινεργικής νευροδιαβίβασης. Ο DAT αποτελεί μοριακό στόχο θεραπευτικών ουσιών για την θεραπεία νοητικών δυσλειτουργιών όπως η σχιζοφρένεια και η κατάθλιψη. Επιπροσθέτως είναι στόχος εθιστικών ουσιών όπως η κοκαΐνη και η αμφεταμίνη. Οι ψυχοδιεγερτικές και οι θεραπευτικές ουσίες δεσμεύονται στον DAT, αλλάζουν την λειτουργία του και ως εκ τούτου επιτείνουν την ένταση και διάρκεια της ντοπαμινεργικής νευροδιαβίβασης. Η παρεγκεφαλίδα δέχεται μια κατεχολαμινεργική νεύρωση η οποία θεωρείται ότι είναι νοραδρενεργική. Εν τούτοις βιοχημικές, φαρμακολογικές και ανατομικές μελέτες υποδεικνύουν ότι επίσης δέχεται μια μικρή ντοπαμινεργική νεύρωση από την κοιλιακή περιοχή της καλύπτρας και την συμπαγή μοίρα της μέλαινας ουσίας. Πρόσφατες ανοσοϊστοχημικές μελέτες μας για τον DAT υπέδειξαν ότι νευρώνες της παρεγκεφαλίδας μπορεί να εκφράζουν τον μεταφορέα. Στην παρούσα μελέτη ο εντοπισμός του μεταφορέα της ντοπαμίνης (DAT) στην παρεγκεφαλίδα φυσιολογικών μυών, τόσο σε επίπεδο πρωτεΐνης όσο και σε επίπεδο mRNA έγινε με την μέθοδο Western Blot, IP και RT-PCR αντίστοιχα. Η πρωτεΐνη ανιχνεύθηκε στο κλάσμα των συναπτοσωμάτων, ενώ το mRNA σε ολικό εκχύλισμα παρεγκεφαλίδας. Τα αποτελέσματα έρχονται να επιβεβαιώσουν την ύπαρξη ντοπαμινεργικών κυττάρων στην παρεγκεφαλίδα. / In the Central Nervous System (CNS) the neurotransmitter dopamine (DA) controls important functions including hormone secretion, locomotion, cognitive processes and complex behaviours that are associated with emotion and reward. Dopamine uptake through the neuronal plasma membrane DA transporter is essential for the maintenance of normal DA homeostasis in the brain. It is believed that DAT controls the intensity and the duration of dopamine neurotransmittion. DAT is the molecular target for therapeutic agents used in the treatment of mental disorders, such as schizophrenia and depression. In addition, DAT is the target for cocaine and amphetamine. Psychostimulants and therapeutic substances alter its transporter function and therefore prolong the intensity and duration of dopaminergic neurotransmittion.The cerebellum receives a catecholaminergic input that is generally accepted to be noradrenergic. However, biochemical, pharmacological and anatomical evidence indicate that the cerebellum also receives a small dopaminergic input from ventral tegmental area and substantia nigra pars compacta. Recent immunohistochemical studies have indicated that cerebellar neurons express the transporter. In the current study, cerebellar dopamine transporter protein and mRNA were studied using the methods of western blotting and RT-PCR. Our results confirm the existence of dopaminergic neurons in cerebellum.
433

Physiologische und morphologische Charakterisierung des dopaminergen Systems in der olfaktorischen Peripherie von Xenopus-laevis-Larven / Physiological and morphological Characterisation of the dopaminergig System in the olfactory periphery of Xenopus-laevis larvae

Schriever, Valentin 20 November 2012 (has links)
No description available.
434

Limbic-striatal interactions and their modulation by dopamine : electrophysiological, neurochemical and behavioral analyses

Floresco, Stanley Bogdan 05 1900 (has links)
Excitatory glutamatergic inputs from limbic regions such as the hippocampus and the basolateral amygdala (BLA), and dopaminergic inputs from the ventral tegmental area converge in the nucleus accumbens (NAc). It has been proposed that interactions between these glutamatergic and dopaminergic pathways play an important role in adaptive behaviors. The present thesis employed a multidisciplinary approach to study these interactions, with a specific emphasis on the importance of mesoaccumbens dopamine (DA) transmission, in order to obtain a better understanding of the neural mechanisms by which the NAc transforms signals from the temporal lobes into behavior. The experiments of Chapter 2 utilized extracellular single-unit recordings of individual NAc neurons in combination with electrochemical measures of DA efflux in the NAc. Recordings from NAc neurons which received input from the hippocampus but not the BLA revealed that increased efflux of mesoaccumbens DA, evoked by tetanic stimulation of the fimbria, potentiated hippocampal-evoked neural activity in these cells. These effects were mediated by both DA and NMDA receptors. Similar recordings from neurons which received converging input from both the hippocampus and the BLA revealed tetanic stimulation of the fimbria again potentiated hippocampal evoked spiking activity, while concurrently suppressing BLA-evoked spiking activity in the same neurons. The suppression of BLA-evoked spiking activity was activity-dependent, and was mediated by both D, and adenosine A, receptors. Chapter 3 showed that random foraging on a radial-arm maze, which is dependent on a neural circuit linking the hippocampus to the NAc, was correlated with an increase in mesoaccumbens DA extracellular levels, as measured with microdialysis. In Chapter 4, pharmacological blockade of DA or NMDA receptors in the NAc, or selective disruption of dopaminergic modulation of ventral subicular inputs to the NAc (using an asymmetrical infusion procedure) significantly disrupted random foraging. These effects were mediated by the Dl receptor. In Chapter 5, the present data are integrated with previous research to formulate a model of ventral striatal function. It is proposed that the NAc mediates behavior through distinct patterns of activity and inactivity driven by excitatory limbic input projecting to different groups of neural ensembles. Mesoaccumbens DA transmission plays an essential role in regulating the synchrony ensemble activity, augmenting activity in one ensemble while suppressing activity in another. It is argued that the modulatory effects of DA appears to be essential when an organism must switch from one form of adaptive behavior to another in response to a constantly changing environment.
435

Characterizing a Role for Dopamine on Sleep and Cataplexy in Narcoleptic Mice

Tse, Gavin 30 July 2008 (has links)
Narcolepsy is a disabling sleep disorder that is characterized by persistent sleepiness, and cataplexy – an involuntary loss of waking muscle tone. Cataplexy and narcolepsy are caused by the loss of hypocretin containing neurons in the hypothalamus. However, it is hypothesized that dopamine is also involved in sleep and motor control and plays a role in cataplexy. This study investigated how manipulating dopamine affected sleep and cataplexy in narcoleptic mice devoid of hypocretin. We used d-amphetamine to increase endogenous dopamine levels and quinpirole (D2 agonist) to agonize D2 receptor sites. Amphetamine promoted wakefulness while decreasing sleep in wild-type mice, but was less effective in narcoleptic mice. Amphetamine also reduced cataplexy as well as sleep attacks (an indicator of sleepiness) in narcoleptic mice. Quinpirole had no effect on sleep or wakefulness; however, it potently increased cataplexy without affecting sleep attacks in narcoleptic mice.
436

Effect of Glycogen Synthase Kinase 3-β on the Acquisition & Expression of Intra-Accumbal Amphetamine-Induced Conditioned Place Preference in Rats

Quartarone, Susan 03 January 2014 (has links)
Dopamine (DA) drives incentive learning: learning which is elicited through rewarding stimuli. Irregularities in DA activity are associated with various psychological disorders. Glycogen synthase kinase-3β (GSK3β), a molecule downstream of DA receptors, has been implicated in mediating dopaminergic behaviour, and unbalanced DA activity is associated with concomitant irregularities in GSK3β signaling. Inhibition of this molecule has been noted to attenuate behavioural sensitization, and decrease psychotomimetic behaviour in animals. Few studies have assessed the role of GSK3β in the conditioned place preference (CPP) paradigm, which evaluates the rewarding properties of substances and has been used to model psychosis. CPP can be examined through either acquisition or expression paradigms, which look at the active learning process vs. the recall of learned information respectively. We tested the hypothesis that selective inhibition of GSK3β with SB 216763 will differentially and dose-dependently affect the acquisition and expression of amphetamine (AMPH) CPP, as well as attenuate AMPH locomotor activity in acquisition. All drugs and vehicles were administered via intra-cranial microinfusions into the nucleus accumbens. AMPH was administered at a dose of 20.0 μg/0.5 μl/side. SB 216763 was tested at four doses (0.03, 0.30, 3.00, & 5.00 μg/0.5 μl/side) in both acquisition and expression. We found administering SB 216763 at all doses to attenuate AMPH CPP and locomotor activity in acquisition. At doses 0.30, 3.00, & 5.00 μg/0.5 μl/side, SB 216763 also blocked AMPH CPP at expression. These results lend support to GSK3β’s involvement in incentive learning and DA-mediated behaviours, and suggest its inhibition may differentially affect the acquisition and expression of AMPH CPP. / Thesis (Master, Psychology) -- Queen's University, 2014-01-03 15:41:20.989
437

Approach-avoidance Conflict for Sucrose and Footshock Pairing in Cocaine-sensitized Rats

Nguyen, David 05 December 2013 (has links)
Repeated administration of psychostimulant drugs induces a long-term state of sensitization in the mesolimbic dopamine system. This hyperdopaminergic state is associated with enhanced reward-seeking behaviors. Such aberration of incentive motivational processing is suggested to facilitate the initiation and maintenance of compulsive drug-taking behaviors. A defining characteristic of addiction is the persistence to pursue drug reinforcement despite negative consequences associated with administration. Thus, it is likely that addicts frequently experience states of motivational conflict to both seek and avoid the drug. The present study investigated the effects of repeated cocaine exposure on goal-seeking behaviors in rats, utilizing conflict paradigms wherein positive and negative incentive motivations were simultaneously evoked. Here it was shown that cocaine-experienced rats displayed both enhanced approach and avoidance behaviors, depending upon the conditions put forth in each paradigm. The results contribute to elucidating the consequences of drug administration upon basic motivational processes that may influence compulsive drug-taking behaviors.
438

Role of the Catecholamine and Limbic Systems in Narcolepsy/Cataplexy

Burgess, Christian R. 12 December 2013 (has links)
In this thesis I investigated the neural circuits that trigger cataplexy in mice. Specifically, I first addressed the theory that cataplexy is a REM sleep disorder. I then investigated a role for the noradrenergic and dopaminergic systems in murine cataplexy. Finally, I addressed the role of the amygdala in triggering cataplexy. From this work several specific conclusions can be drawn: 1. Cataplexy does not share a common executive mechanism with REM sleep, although the two may share a common mechanism that generates muscle atonia. Muscle tone during REM sleep and cataplexy is similar, however increasing REM sleep pressure does not increase cataplexy and positive affective stimuli that can increase cataplexy tend to decrease REM sleep. 2. Systemic manipulation of dopamine receptors can modulate cataplexy without affecting behavioral state. Specifically, manipulation of D2-like dopamine receptors at specific doses can modulate cataplexy while having no affect on sleep-wake state or sleep attacks, and manipulation of D1-like receptors potently affects sleep-wake state and sleep attacks without affecting cataplexy. 3. Systemic modulation of noradrenergic activity in orexin KO mice is sufficient to modulate cataplexy. Specifically, activation of excitatory α1 receptors reduces the occurrence of cataplexy while blockade of these receptors exacerbates it. 4. Withdrawal of an endogenous α1-mediated noradrenergic drive from motor neurons during wakefulness contributed to the loss of muscle tone during cataplexy. Re-establishing this excitatory drive exogenously alleviated cataplexy-dependant muscle atonia. 5. The amygdala is a critical part of the neural mechanism that triggers cataplexy in orexin KO mice. Ablation of the amygdala resulted in significant decreases in both baseline cataplexy and emotionally-induced cataplexy. The amygdala may trigger cataplexy through direct projections to brainstem areas that regulate muscle atonia.
439

DOPAMINE D1-LIKE, D2 AND D3 RECEPTOR SUBTYPES IN CATALEPSY SENSITIZATION AND CONDITIONING IN RATS: IMPLICATIONS FOR MOTOR FUNCTION, MOTIVATION AND LEARNING

Banasikowski, Tomek 13 August 2012 (has links)
The behavioral effects of drugs that act on the brain’s dopamine (DA) system change with repeated exposure to the drug. Antipsychotic drugs, that block DA receptors, produce progressively greater effects on behavior with repeated testing. For example, rats repeatedly treated with a low dose of the D2 receptor-preferring antagonist haloperidol do not initially exhibit catalepsy, a response quantified by time spent on a horizontal bar without active movement. However, with repeated drug-environment pairings animals show a reduction in exploration and increases in catalepsy. The current thesis examined the drug-environment relationship in catalepsy sensitization, and how different DA receptor subtypes control this phenomenon. Treatment with a D2, but not D3 or D1-like receptor-preferring antagonist produced catalepsy sensitization. Catalepsy sensitization developed in one test environment did not transfer to another environment. Similarly, rats with a history of haloperidol treatments outside of the test environment (unpaired group) did not exhibit significant catalepsy when given haloperidol for the first time prior to catalepsy testing. Previous exposure to the catalepsy test environment led to a more rapid development of catalepsy sensitization. Thus, drug-environment interaction is critical for the development and expression of catalepsy sensitization. Rats previously given haloperidol and tested with saline in the drug paired environment exhibited conditioned catalepsy. The acquisition of conditioned catalepsy is dependent on D1-like receptors, while its expression is dependent on D3 receptors. Conditioned catalepsy showed gradual day-to-day extinction with repeated saline treatment in the previously haloperidol-paired environment. Following extinction, the response to haloperidol in previously sensitized rats shifted from environment-specific to environment-independent suggesting that a putative haloperidol drug cue alone can elicit conditioned catalepsy. In summary, treatment with a D2, but not D1-like or D3 receptor-preferring antagonist in a particular test environment produces catalepsy sensitization, while acquisition of conditioned catalepsy is dependent on D1-like receptors, and its expression is dependent on D3 receptors. Importantly, the acquisition and expression of sensitization to haloperidol is conditional on the presence of drug-associated environmental stimuli. Our findings provide further insight into the current understanding of learning processes involved in the action of antipsychotic drugs and the dissociable effects of D1-like, D2 and D3 receptors controlling this phenomenon. / Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2012-08-12 15:51:00.467
440

The role of dopamine-related genes in autism spectrum disorders: Evidence for specific genes and risk for ASD in families with affected males

Hettinger, Joseph Alan 25 March 2009 (has links)
Individuals with autism spectrum disorders (ASDs) are impaired in cognitive processes and emotional regulation, and exhibit stereotyped behaviours. Dopamine (DA) modulates executive functions, learning, memory, emotional processing and social cognition; all of which are impaired in individuals with ASDs. Because DA modulates a number of processes that are impaired in individuals with ASDs, genes in the dopaminergic pathway are good candidates for genes influencing autistic behaviours. As our previous findings suggested a role for a dopamine-related gene in families with only affected males, this thesis describes a comprehensive study of five genes affecting DA synthesis, levels and function in mothers and affected males with ASDs in an initial TEST cohort of 112 male-only affected sib-pair families as well as a replication study in three additional male-only family cohorts. I genotyped three to five polymorphisms in the TH, SLC6A3, DRD1, DRD2 and PPP1R1B genes and performed population-based single marker case-control comparisons, family-based association tests, quantitative transmission disequilibrium tests as well as haplotype-based analyses and tests for gene-gene interactions. I found evidence for association of the DRD1 (P=0.0027-0.040), DRD2 (P=0.0002-0.007) and PPP1R1B (P=0.00042-0.001) genes with autism in affected males from the TEST cohort. Evidence for DA-related gene interactions were found between polymorphisms in DRD1, DRD2 and PPP1R1B (P=0.0094-0.012) in affected males relative to a comparison group. Furthermore, I found that polymorphisms in the TH and DRD1 genes were associated with the risk for mothers having sons with ASD in the TEST families (P=0.007-0.025) and putative risk alleles in DRD1 and DRD2 were preferentially transmitted from mothers (P=0.016) and fathers (P=0.023) respectively, to affected children. All findings remained significant following corrections for multiple testing. The TEST cohort findings were not replicated in other family cohorts. However, an examination of dysmorphology data for the different family sets revealed phenotypic differences and thus, genetic differences are to be expected. In summary, I found evidence for a contribution of DA-related genes in a specific family cohort with ASDs. Additional functional and phenotypic studies will enable a better understanding of the contributions and implications of these findings to our understanding of autism. / Thesis (Ph.D, Physiology) -- Queen's University, 2009-03-18 13:58:12.223

Page generated in 0.0391 seconds