• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne 14 May 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
2

Combustion Synthesis of Nanomaterials Using Various Flame Configurations

Ismail, Mohamed 02 1900 (has links)
Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The modified CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases within these regions, with a slight increase in the axial velocity due to the precursor injection. This led to more uniformity in particle size distribution of the synthesized nanoparticles with the poppet valve (first modification). The double-slit modification improved the uniformity of generated nanoparticles at a very wide range of stable experimental conditions. Images of OH fluorescence showed that flames are tightly attached to the burner tip and TTIP has no influence on these flames structures. The particle size was slightly affected by the operating conditions. The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate and high temperature residence time of the precursor vapor. For ethylene and methane flames, the anatase content is proportional to the equivalence ratio, whereas it is inversely proportional in the case of propane flames. The anatase content reduced by 8% as we changed Re between 8,000 and 19,000, implying that the Re has a slight effect on the anatase content. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ >1.6) for C2H4, and at low equivalence ratios (φ <1.3) for the C3H8 flame. Concerning advanced nanoparticle synthesis, a multiple diffusion burner and flame spray pyrolysis (FSP) were adopted in this study to investigate the effect of doping/coating on TiO2 nanoparticles. The nanoparticles were characterized by the previously mentioned techniques in addition to thermogravimetric analysis (TGA) for carbon content, X-ray photoelectron spectroscopy (XPS) for surface chemistry, ultraviolet-visible spectroscopy (UV-vis) for light absorbance, inductively coupled plasma (ICP) for metal traces, and superconducting quantum interference device (SQUID) for magnetic properties. Results from multi diffusion burner show that doping TiO2 with vanadium changes the phase from anatase to rutile while doping and coating with carbon or SiO2 does not affect the phase. Doping with iron reduces the band gab of TiO2 particles by reducing the conduction band. FSP results show that iron doping changes the valance band of the nanoparticles and enhances their paramagnetic behavior as well as better light absorption than pure titania, which make these particles good candidates for photocatalytic applications.
3

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne January 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
4

Nano-Catalyst Synthesized by Flame Spray Pyrolysis (FSP) for Visible Light Photocatalysis

Inturi, Siva Nagi Reddy January 2017 (has links)
No description available.
5

Conformal sol-gel coatings on three-dimensional nanostructured templates

Weatherspoon, Michael Raymond 19 December 2007 (has links)
A custom-built surface sol-gel pumping system was built for applying conformal sol-gel based coatings with controlled thicknesses on three-dimensional (3-D) nanostructured templates. The 3-D templates utilized in this work were derived from biological species, such as diatoms and butterfly wings, as well as a synthetic photoresist polymer (SU-8). Tin oxide coatings were applied on silica-based diatom frustules using the automated surface sol-gel pumping system. An organic dendrimer method was developed for amplifying hydroxyl groups on the silica-based frustule surfaces to enhance the surface sol-gel deposition process. Conformal tin oxide coatings with controlled thicknesses were obtained on the hydroxyl amplified frustule surfaces; however, little if any deposition was observed on the frustules that were not subjected to the hydroxyl amplification process. The automated surface sol-gel system was also utilized to apply multicomponent tin oxide-doped titania alkoxide chemistries on the wing scales of a blue Morpho butterfly. The alkoxide solutions reacted directly with the OH functionalities provided by the native chitin chemistry of the scales. The tin oxide served as a rutile nucleating agent which allowed the titania to completely crystallize in the high refractive index rutile titania phase with doping concentrations of tin oxide as low as 7 mol % after annealing at 450oC. The tin oxide-doped titania coatings were both nanocrystalline and nanothick and replicated the nanostructured scales with a high degree of precision. Undoped titania coatings applied on the scales required a heat treatment of 900oC to crystallize the coating in the rutile titania phase which led to adverse coarsening effects which destroyed the nanostructed features of the scales. Tin oxide-doped titania coatings were also deposited on 3-D SU-8 photonic crystal structures. The coating was crystallized in an acidic solution at 80oC which led to the formation of rutile titania inverse opal photonic crystal structures which maintained the overall structure and ordering of the template. Barium titanate and europium-doped barium titanate coatings were applied on diatom frustules using a conventional reflux/evaporation deposition process. The silica-based diatom frustules had to first be converted into magnesia/silicon composite replicas using a gas/solid displacement reaction to render the template chemically compatible with the barium titanate-based coating. Conformal titanate-based coatings were obtained on the magnesia frustule replicas possessing uncontrolled thicknesses and excess inorganic particles using the reflux/evaporation deposition process. The europium-doped barium titanate coated frustules exhibited bright red photoluminescent properties upon stimulation with an ultraviolet light source.
6

Titania Nanotubes For Biotechnological Applications

Murria, Priya 07 1900 (has links) (PDF)
Over the past few decades, inorganic nanostructured materials have elicited a lot of interest due to their high surface-to-volume ratio and many size dependent properties which stem from their nanoscale dimensions. Owing to these distinct properties, they have found applications in widespread fields like catalysis, energy storage, electronics, and biotechnology. In the field of biotechnology, nanotubes and mesoporous materials are attractive vehicles for drug delivery because of their hollow and porous structures and facile surface functionalization. Their inner void can take up large amounts of drug as well as act as gates for the controlled release of drug. These hollow structures can also be used for confining biomolecules like proteins and peptides. The study on protein conformation in biocompatible materials is very important in materials sciences for the development of new and efficient biomaterials(sensors, drug delivery systems or planted devices). Titania(TiO2)has been widely explored for applications in photovoltaic cells, batteries, desalination, sensing, and photocatalysis, to name only a few. The work presented in this thesis focuses on titania based nanostructures for drug delivery and protein confinement. First part of the work focusses on synthesis and characterization of Fe-doped TiO2 nanotubes. Fe-doped TiO2 nanotubes were demonstrated as controlled drug delivery agents. In vitro cytotoxic effects of Fe-doped titania nanotubes were assessed by MTT assay by exposing Hela cell line to the nanotubes. Second part of the work focusses on synthesis and characterization of TiO2 nanotubes by two synthesis procedures, namely hydrothermal and sol-gel template synthesis. Myoglobin, a model globin protein was encapsulated in hydrothermally synthesized TiO 2 nanotubes(diameter 5 nm) and sol-gel template synthesized TiO2 nanotubes(diameter 200 nm). Effect of encapsulating myoglobin these nanotubes was studied. The electrochemical activity and structure of myoglobin were studied by cyclic voltammetry and circular dichroism respectively. Direct electron transfer was found to be enhanced upon confinement in 200 nm diameter nanotubes. No such enhancement was observed upon encapsulation in hydrothermally synthesized nanotubes. In addition to this, the thermal stability of myoglobin was found to be enhanced upon confinement inside 200 nm diameter TiO 2 nanotubes.

Page generated in 0.0588 seconds