• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Gamma Knife Radiosurgery Paradigm: Tomosurgery

Hu, Xiaoliang 09 February 2007 (has links)
No description available.
2

New Concepts in Administration of Drugs in Tablet Form : Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualised Dose Administration System

Bredenberg, Susanne January 2003 (has links)
<p>This thesis presents two new concepts in oral drug administration and the results of evaluation of some relevant formulation factors.</p><p>Investigation into improving the homogeneity of mixtures for tableting indicated that it may be possible to obtain interactive dry mixtures of micronised drugs containing drug proportions as low as 0.015% w/w. By studying the relationship between disintegration time and tensile strength, it was found that the microstructure surrounding the disintegrant particles may influence the disintegration process. Therefore, avoidance of excipients which are highly deformable or very soluble in water will result in more rapid disintegration. Further, it is possible to increase the bioadhesive properties of a non-bioadhesive carrier material by forming interactive mixtures containing a fine particulate bioadhesive material.</p><p>The new sublingual tablet concept presented is based on interactive mixtures consisting of a water-soluble carrier covered with fine drug particles and a bioadhesive component. With this approach, it is possible to obtain rapid dissolution in combination with bioadhesive retention of the drug in the oral cavity. Clinical data indicate that this allows rapid sublingual absorption while simultaneously avoiding intestinal absorption. </p><p>An individualised dose administration system is also presented. This system is based on the use of standardised units (microtablets), each containing a sub-therapeutic amount of the active ingredient. The required dose is fine-tuned by electronically counting out a specific number of these units using an automatic dose dispenser. A patient handling study supported the suggestion that the dosage of some medications can be more easily and safely individualised for each patient with this method than by using traditional methods of mixing different standard tablet strengths or dividing tablets.</p>
3

New Concepts in Administration of Drugs in Tablet Form : Formulation and Evaluation of a Sublingual Tablet for Rapid Absorption, and Presentation of an Individualised Dose Administration System

Bredenberg, Susanne January 2003 (has links)
This thesis presents two new concepts in oral drug administration and the results of evaluation of some relevant formulation factors. Investigation into improving the homogeneity of mixtures for tableting indicated that it may be possible to obtain interactive dry mixtures of micronised drugs containing drug proportions as low as 0.015% w/w. By studying the relationship between disintegration time and tensile strength, it was found that the microstructure surrounding the disintegrant particles may influence the disintegration process. Therefore, avoidance of excipients which are highly deformable or very soluble in water will result in more rapid disintegration. Further, it is possible to increase the bioadhesive properties of a non-bioadhesive carrier material by forming interactive mixtures containing a fine particulate bioadhesive material. The new sublingual tablet concept presented is based on interactive mixtures consisting of a water-soluble carrier covered with fine drug particles and a bioadhesive component. With this approach, it is possible to obtain rapid dissolution in combination with bioadhesive retention of the drug in the oral cavity. Clinical data indicate that this allows rapid sublingual absorption while simultaneously avoiding intestinal absorption. An individualised dose administration system is also presented. This system is based on the use of standardised units (microtablets), each containing a sub-therapeutic amount of the active ingredient. The required dose is fine-tuned by electronically counting out a specific number of these units using an automatic dose dispenser. A patient handling study supported the suggestion that the dosage of some medications can be more easily and safely individualised for each patient with this method than by using traditional methods of mixing different standard tablet strengths or dividing tablets.

Page generated in 0.0548 seconds