Spelling suggestions: "subject:"double extension"" "subject:"bouble extension""
1 |
Formes bilinéaires invariantes sur les algèbres de Leibniz et les systèmes triples de Lie (resp. Jordan) / Invariant bilinear forms on Leibniz algebras and Lie (resp. Jordan) triple systemsHidri, Samiha 14 November 2016 (has links)
Dans cette thèse, on étudie la structure de quelques types d'algèbres (binaires et ternaires) munies d'une forme bilinéaire symétrique, non dégénérée et associative (ou invariante). La première partie de cette thèse est consacrée à l'étude des algèbres de Leibniz quadratiques. On montre que ces algèbres sont symétriques. De plus, on utilise la T*-extension et la double extension pour montrer plusieurs résultats sur ce type d'algèbres. Ensuite, on a remarqué que l'anti-commutativité du crochet de Lie donne naissance à de nouveaux types d'invariance pour les algèbres de Leibniz : L'invariance à gauche et l'invariance à droite. Alors, on s'est intéresse à l'étude des algèbres de Leibniz (gauche et droite) munies d'une forme bilinéaire symétrique, non dégénérée et invariante à gauche (et invariante à droite). On prouve que ces algèbres sont Lie admissibles. En second lieu, on s'intéresse aux systèmes triples de Lie et de Jordan. On débute la deuxième partie de cette thèse par la description inductive des systèmes triples de Lie quadratiques au moyen de la double extension. En plus, on introduit la T*extension des systèmes triples de Jordan pseudo-Euclidien. Finalement, on donne deux nouvelles caractérisations des systèmes triples de Jordan semi-simples parmi les systèmes triples de Jordan pseudo-Euclidiens / In this thesis, we study the stucture of several types of algebras endowed with Symmetric, non degenerate and invariant bilinear forms. In the first part, we study quadratic Leibniz algebras. First, we prove that these algebras are symmetric. Then, we use the T*-extension and the double extension to prove some properties of this type of Leibniz algebras. Besides, since we observe that the skew-symmetry of the Leibniz bracket gives rise to other types of invariance for a bilinear form on a Leibniz algebra: The left invariance and the right invariance. We focus on the study of left (resp. right) Leibniz algebras with symmetric, non degenerate and left (resp. right) invariant bilinear form. In particular, we prove that these algebras are Lie admissibles. The second part of this work is dedicated to the study of quadratic Lie triple systems and pseudo-euclidien Jordan triple systems. We start by giving an inductive description of quadratic Lie triple systems using double extension. Next, we introduce the T*-extension of Jordan triple systems. Finally, we give new caracterizations of semi-simple Jordan triple systems among pseudo-euclidian Jordan triple systems
|
2 |
Géométrie des Groupes de Lie symplectiquesSiby, Hassène 19 December 2005 (has links) (PDF)
Un groupe de Lie est dit symplectique s'il est muni d'une forme symplectique invariante à gauche . Ces groupes sont naturellement munis d'une structure affine associée à la forme symplectique. \\<br />Dans cette thèse d'une part nous déterminons les groupes de Lie symplectiques connexes et simplement connexes de dimension $4$ et $6$ et d'autre part nous étudions une famille infinie de groupes symplectiques dans lesquels la forme symplectique est "invariantement" exacte.<br />Dans tous ces cas nous nous intéressons à l'existence de sous-groupes lagrangiens et parfois des sous-groupes lagrangiens transverses pour mettre en évidence des structures symplectiques affines invariantes à gauche.<br />La structure de ces groupes est étudiée à l'aide de l'application moment.
|
3 |
A new invariant of quadratic lie algebras and quadratic lie superalgebrasDuong, Minh-Thanh 06 July 2011 (has links) (PDF)
In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
4 |
A new invariant of quadratic lie algebras and quadratic lie superalgebras / Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiquesDuong, Minh thanh 06 July 2011 (has links)
Dans cette thèse, nous définissons un nouvel invariant des algèbres de Lie quadratiques et des superalgèbres de Lie quadratiques et donnons une étude et classification complète des algèbres de Lie quadratiques singulières et des superalgèbres de Lie quadratiques singulières, i.e. celles pour lesquelles l’invariant n’est pas nul. La classification est en relation avec les orbites adjointes des algèbres de Lie o(m) et sp(2n). Aussi, nous donnons une caractérisation isomorphe des algèbres de Lie quadratiques 2-nilpotentes et des superalgèbres de Lie quadratiques quasi-singulières pour le but d’exhaustivité. Nous étudions les algèbres de Jordan pseudoeuclidiennes qui sont obtenues des extensions doubles d’un espace vectoriel quadratique par une algèbre d’une dimension et les algèbres de Jordan pseudo-euclidienne 2-nilpotentes, de la même manière que cela a été fait pour les algèbres de Lie quadratiques singulières et des algèbres de Lie quadratiques 2-nilpotentes. Enfin, nous nous concentrons sur le cas d’une algèbre de Novikov symétrique et l’étudions à dimension 7. / In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
Page generated in 0.0953 seconds