• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cohomologie équivariante et quantification géométrique

PARADAN, Paul-Émile 23 December 2003 (has links) (PDF)
Mes travaux de recherches concernent les différentes théories cohomologiques associées aux actions de groupes de Lie compacts sur des variétés différentiables: cohomologie équivariante, K-théorie équivariante, et la théorie des opérateurs transversalement elliptiques. Ils se situent au carrefour entre la géométrie symplectique et la théorie des représentations. Le fil conducteur de ma recherche a été le programme de (\it localisation non-abélienne) de Witten. Dans ce mémoire, je rappelle les techniques mises en oeuvre pour réaliser ce programme, et les résultats qui en découlent.
2

Géométrie des Groupes de Lie symplectiques

Siby, Hassène 19 December 2005 (has links) (PDF)
Un groupe de Lie est dit symplectique s'il est muni d'une forme symplectique invariante à gauche . Ces groupes sont naturellement munis d'une structure affine associée à la forme symplectique. \\<br />Dans cette thèse d'une part nous déterminons les groupes de Lie symplectiques connexes et simplement connexes de dimension $4$ et $6$ et d'autre part nous étudions une famille infinie de groupes symplectiques dans lesquels la forme symplectique est "invariantement" exacte.<br />Dans tous ces cas nous nous intéressons à l'existence de sous-groupes lagrangiens et parfois des sous-groupes lagrangiens transverses pour mettre en évidence des structures symplectiques affines invariantes à gauche.<br />La structure de ces groupes est étudiée à l'aide de l'application moment.
3

Quelques applications des symétries en géométrie différentielle et systèmes dynamiques

Dragulete, Oana 05 September 2007 (has links) (PDF)
Mes recherches se situent à l'interface de la géométrie Riemannienne et des géométries de contact et symplectique et portent sur la construction des métriques Kähler ou Sasakie-Einstein, sur l'étude des systèmes Hamiltonians conformes, la géométrie des fibrés cosphériques et les groupoïdes de Lie propres. Le thème principal de cette thèse est l'étude des applications des symétries Lie en géométrie différentielle et systèmes dynamiques. Le premier chapitre de cette thèse étudie la réduction singulière des symétries du fibré cosphérique, les propriétés conservatives des systèmes de contact et leurs réduction. Le fibré cosphérique d'une variété différentiable $M$ (dénoté par $S^*(M)$) est le quotient de son fibré cotangent sans la section nulle par rapport à l'action par multiplication de $\RR^+$ qui couvre l'identité sur $M$. C'est une variété de contact qui détient en géométrie de contact la position analogue du fibré cotangent en géométrie symplectique. En utilisant une métrique Riemannienne sur $M$, on peut identifier $S^*(M)$ avec son fibré tangent unitaire et son champ de Reeb avec le champ géodésique de $M$. Si $M$ est munie de l'action propre d'un groupe de Lie $G$, le relèvement de cette action à $S^*(M)$ respecte la structure de contact et admet une application moment équivariante $J$. Nous étudions les propriétés topologiques et géométriques de l'espace réduit à moment zéro de $S^*(M)$, i.e. $\left(S^*(M)\right)_0 :=J^{-1}(0)/G$. Ainsi, nous généralisons les résultats de \cite{dragulete--ornea--ratiu} au cas singulier. Appliquant la théorie générale de réduction de contact, théorie dévéloppée par Lerman et Willett dans \cite{lerman--willett} et \cite{willett}, on obtient des espaces qui perdent toute information sur la structure interne du fibré cosphérique. En plus, la projection du fibré cosphérique sur sa base descend à une surjection continue de $\left(S^*(M)\right)_0$ à $M/G$, mais qui n'est pas un morphisme d'espaces stratifiés si on munit l'espace réduit avec sa stratification de contact et l'espace de base avec la stratification standarde de type orbitale définie par l'action du groupe de Lie. Compte tenu des théorèmes de réduction du fibré cotangent (cas régulier et singulier) et du fibré cosphérique ( cas régulier), on s'attend à ce que les strates de contact aient une structure fibrée additionnelle. Pour résoudre ces problèmes, nous introduisons une nouvelle stratification de $\left(S^*(M)\right)_0$, nommée la \emph{stratification C-L} (les deux majuscules symbolisent la nature coisotrope ou Legendréenne de leurs strates). Elle est compatible avec la stratification de contact de $\left(S^*(M)\right)_0$ et la stratification de type orbital de $M/G$. Aussi, elle est plus fine que la stratification de contact et rend la projection de $\left(S^*(M)\right)_0$ sur $M/G$ un morphism d'espaces stratifiés. Chaque strate C-L est un fibré sur une strate de type orbital de $M/G$ et elle peut être vue comme une union de strates C-L, une d'entre elles étant ouverte et dense dans la strate de contact correspondante et difféomorphe à un fibré cosphérique. Ainsi, nous avons identifié les strates maximales munies de structure de fibrés cosférique. Les autres strates sont des sous-variétés coisotropes ou Legendre dans les composantes de contact qui les contiennent. Par conséquant nous faison une analyse géométrique et topologique complète de l'espace réduit. Nous analysons aussi le comportement de la projection sur $\left(S^*(M)\right)_0$ du flot de Reeb (flot géodésique). L'ensemble de champs de vecteurs de contact (les analogues des champs de vecteurs Hamiltonians en géométrie symplectique) forment le "groupe de Lie" de l'algèbre des transformations de contact. Dans le premier chapitre nous présentons aussi la réduction des systèmes de contact (qui, localement, sont en correspondence bijective avec les équations non-autonomes de Hamilton-Jacobi) et les systèmes Hamiltonians dépendants de temps. Dans le deuxième chapitre nous étudions les propriétés géométriques des quotients de variétés Sasaki et Kähler. Nous construisons une procédure de réduction pour les variétés symplectiques et Kähler (munies de symétries générées par un groupe de Lie) qui utilise les préimages rayon de l'application moment. Précisémmant, au lieu de considérer comme dans la réduction de Marsden-Weinstein (ponctuelle) la préimage d'une valeur moment $\mu$, nous utilisons la préimage de $\RR^+\mu$, le rayon positif de $\mu$. Nous avons trois motivations pour développer cette construction. Une est géométrique: la construction des espaces réduits de variétés Kähler correspondant á un moment non nulle qui soient canoniques dans le sense que la structure Kähler réduite est la projection de la structure Kähler initiale. La réduction ponctuelle (Marsden-Weinstein) donnée par $M_\mu:=J^{-1}(\mu)/G_\mu$ où $\mu$ est une valeur de l'application moment $J$ et $G_\mu$ est le sous-groupe d'isotropie de $\mu$ par rapport à l'action coadjointe de $G$ n'est pas toujours bien définie dans le cas Kähler (si $G\neq G_\mu$). Le problème est causé par le fait que la structure complexe de $M$ ne préserve pas la distribution horizontale de la submersion Riemannienne qui projète $J^{-1}(\mu)$ sur $M_\mu$. La solution proposée dans la litterature utilise l'espace réduit à moment zéro de la difference symplectique de $M$ avec l'orbite coadjointe de $\mu$ munie d'une forme Kähler-Einstein unique (construite par exemple dans \cite{besse}, Chapitre $8$) et différente de la forme de Kostant-Kirillov-Souriau. L'unicité de la forme sur l'orbite coadjointe garantit un espace réduit bien défini. Par contre, ne plus utiliser la forme de Kostant-Kirillov-Souriau entraîne le fait que l'espace réduit n'est plus canonique. L'espace réduit rayon que nous construisons est canonique et peut être défini pour tout moment. Il est le quotient de $J^{-1}(\RR^+\mu)$ par rapport à un certain sous-groupe normal de $G_\mu$. La deuxième raison est une application à l'étude des systèmes Hamiltonians conformes (voir \cite{mclachlan--perlmutter}). Ce sont des systèmes mécaniques non-autonomes, avec friction dont les courves intégrales préservent, dans le cas des symétries, les préimages rayons de l'application moment. Nous extendons la notion de champ Hamiltonian conforme, en montrant qu'on peut ainsi inclure dans cet étude de nouveaux systèmes mécaniques. également, nous présentons la réduction de systèmes Hamiltonians conformes. La troisième raison consiste à trouver des conditions necéssaires et suffisantes pour que les espaces réduits (rayons) des variétés Kähler (Sasakian)-Einstein soient aussi Kähler (Sasakian)-Einstein. Nous nous occupons de cela dans le deuxième chapitre de la thèse, dans \cite{dragulete--ornea} et dans \cite{dragulete--doi} où nous utilisons des techniques de A. Futaki. Ainsi, nous pouvons construire de nouvelles structures de Sasaki-Einstein. Comme exemples de réductions rayon symplectic (Kähler) et contact (Sasaki) nous traitons le cas des fibrés cotangent et cosphérique. Nous montrons qu'ils sont des espaces universels pour la réduction rayon. Des exemples d'actions toriques sur des sphères sont aussi décrits. Le troisième chapitre de cette thèse traite l'étude de l'espace des orbites d'un groupoïde propre. Dans \cite{weinstein--unu}, \cite{weinstein--doi} A. Weinstein a partiellement résolu le problème de la linéarisation des groupoïdes propres. En \cite{zung}, N. T. Zung l'a achevé en démontrant un théorème de type Bochner pour les groupoïdes propres. Nous prouvons un théorème de stratification de l'espace d'orbites d'un groupoïde propre en utilisant des idées de la théorie des foliations et le théorème de "slice" (linéarisation) de Weinstein et Zung. Nous montrons explicitement que le feuilletage orbital d'un groupoïde propre est un feuilletage Riemannien singulier dans le sense de Molino. Pour cela nous avons deux motivations. D'un côté nous voulons montrer qu'il y ait une équivalence entre groupoïdes propres et "orbispaces" (des espaces qui sont localement des quotiens par rapport à l'action d'un groupe de Lie compact) et d'un autre nous voulons étudier la réduction des actions infinitésimales (actions d'algèbres de Lie) qui ne sont pas intégrables à l'action d'un groupe de Lie. Ces actions et leur intégrabilité ont été étudiées, entre autres, par Palais (\cite{palais}), Michor, Alekseevsky.
4

Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généralisées

Ascah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$ Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$. After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.
5

Les actions de groupes en géométrie symplectique et l'application moment

Payette, Jordan 11 1900 (has links)
Ce mémoire porte sur quelques notions appropriées d'actions de groupe sur les variétés symplectiques, à savoir en ordre décroissant de généralité : les actions symplectiques, les actions faiblement hamiltoniennes et les actions hamiltoniennes. Une connaissance des actions de groupes et de la géométrie symplectique étant prérequise, deux chapitres sont consacrés à des présentations élémentaires de ces sujets. Le cas des actions hamiltoniennes est étudié en détail au quatrième chapitre : l'importante application moment y est définie et plusieurs résultats concernant les orbites de la représentation coadjointe, tels que les théorèmes de Kirillov et de Kostant-Souriau, y sont démontrés. Le dernier chapitre se concentre sur les actions hamiltoniennes des tores, l'objectif étant de démontrer le théorème de convexité d'Atiyha-Guillemin-Sternberg. Une discussion d'un théorème de classification de Delzant-Laudenbach est aussi donnée. La présentation se voulant une introduction assez exhaustive à la théorie des actions hamiltoniennes, presque tous les résultats énoncés sont accompagnés de preuves complètes. Divers exemples sont étudiés afin d'aider à bien comprendre les aspects plus subtils qui sont considérés. Plusieurs sujets connexes sont abordés, dont la préquantification géométrique et la réduction de Marsden-Weinstein. / This Master thesis is concerned with some natural notions of group actions on symplectic manifolds, which are in decreasing order of generality : symplectic actions, weakly hamiltonian actions and hamiltonian actions. A knowledge of group actions and of symplectic geometry is a prerequisite ; two chapters are devoted to a coverage of the basics of these subjects. The case of hamiltonian actions is studied in detail in the fourth chapter : the important moment map is introduced and several results on the orbits of the coadjoint representation are proved, such as Kirillov's and Kostant-Souriau's theorems. The last chapter concentrates on hamiltonian actions by tori, the main result being a proof of Atiyah-Guillemin-Sternberg's convexity theorem. A classification theorem by Delzant and Laudenbach is also discussed. The presentation is intended to be a rather exhaustive introduction to the theory of hamiltonian actions, with complete proofs to almost all the results. Many examples help for a better understanding of the most tricky concepts. Several connected topics are mentioned, for instance geometric prequantization and Marsden-Weinstein reduction.
6

Equations de type Vortex et métriques canoniques

Keller, Julien 28 October 2005 (has links) (PDF)
Soit $M$ une variété projective lisse. Soit $\mathscr{F}$ une filtration holomorphe sur $M$, c'est à dire une filtration d'un fibré vectoriel holomorphe $\mathcal{F}$ induite par des sous-fibrés. Nous introduisons une notion de Gieseker stabilité pour de tels objets puis donnons une condition analytique équivalente en terme de métriques sur $\mathcal{F}$, dites équilibrées au sens de S.K. Donaldson, provenant d'une construction de la Théorie des Invariants Géométriques. Si le fibré $\mathcal{F}$ peut être muni d'une métrique $h$ solution de l'équation $\boldsymbol{\tau}$-Hermite-Einstein étudiée par \'lvarez-C\'{o}nsul et Garc\'a-Prada:<br />$$\sqrt\Lambda F_h = \sum_i \widetilde_i\pi^_$$<br />alors nous prouvons que la suite de métriques équilibrées existe, converge et sa limite est, à un changement conforme, solution de l'équation précédente. De ce résultat nous déduisons, par réduction dimensionnelle, un théorème d'approximation dans le cas des équations Vortex de Bradlow ainsi que leurs généralisations aux équations couplées Vortex.
7

Cohomologie de fibrés en droite sur le fibré cotangent de variétés grassmanniennes généralisées

Ascah-Coallier, Isabelle 04 1900 (has links)
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$ Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles. / In this thesis, we study the cohomology of line bundles on cotangent bundle of projective varieties. To be more precise, let $G$ be an semisimple algebraic group which is simply connected, $P$ a maximal subgroup and $\omega$ a dominant weight that generates the character group of $P$. Our goal is to understand the cohomology groups $H^i(T^*(G/P),\mathcal{L})$ where $\mathcal{L}$ is the sheaf of sections of a line bundle on $T^*(G/P)$. Under some conditions, we will show that there exists an isomorphism, up to grading, between $H^i(T^*(G/P),\mathcal{L})$ and $H^i(T^*(G/P),\mathcal{L}^{\vee})$. After we worked in a theoretical setting, we will focus on maximal parabolic subgroups related to nilpotent varieties. In this case, the Lie algebra of the unipotent radical of $P$ has a structure of prehomogeneous vector spaces. We will be able to determine which cases verify the hypothesis of the isomorphism by showing the existence of a $P$-covariant $f$ in $\comp[\nLie]$ and by studying its properties. We will be interested by the singularities of the affine variety $V(f)$. We will show that the normalisation of $V(f)$ has rational singularities.

Page generated in 0.1111 seconds