Spelling suggestions: "subject:"quotient symplectic""
1 |
Varietes kaehleriennes et hyperkaeleriennes de dimension infinieTumpach, Alice Barbara 26 July 2005 (has links) (PDF)
Le premier chapitre de cette thèse est consacré, d'une part à l'étude des quotients kaehlériens et hyperkaehlériens dans le cadre banachique et, d'autre part, à la construction par quotient hyperkaehlérien (d'une variété banachique non hilbertienne par un groupe de Lie banachique) d'une variété hilbertienne qui s'identifie (en fonction de la structure complexe distinguée) soit à l'espace cotangent d'une composante connexe de la grassmannienne restreinte définie par G. Segal et G. Wilson, soit à une complexification naturelle de cette grassmannienne. Le second chapitre comprend trois parties. La première partie est consacrée à la classification des orbites coadjointes affines hermitiennes symétriques irréductibles des L*-groupes de type compact. La seconde partie est consacrée a la démonstration du théorème de Mostow pour un L*-groupe semi-simple de type compact. Dans la troisième partie, je construis une structure hyperkaehlérienne sur les orbites complexifiées des orbites coadjointes affines hermitiennes symétriques des L*-groupes semi-simples de type compact.
|
2 |
Equations de type Vortex et métriques canoniquesKeller, Julien 28 October 2005 (has links) (PDF)
Soit $M$ une variété projective lisse. Soit $\mathscr{F}$ une filtration holomorphe sur $M$, c'est à dire une filtration d'un fibré vectoriel holomorphe $\mathcal{F}$ induite par des sous-fibrés. Nous introduisons une notion de Gieseker stabilité pour de tels objets puis donnons une condition analytique équivalente en terme de métriques sur $\mathcal{F}$, dites équilibrées au sens de S.K. Donaldson, provenant d'une construction de la Théorie des Invariants Géométriques. Si le fibré $\mathcal{F}$ peut être muni d'une métrique $h$ solution de l'équation $\boldsymbol{\tau}$-Hermite-Einstein étudiée par \'lvarez-C\'{o}nsul et Garc\'a-Prada:<br />$$\sqrt\Lambda F_h = \sum_i \widetilde_i\pi^_$$<br />alors nous prouvons que la suite de métriques équilibrées existe, converge et sa limite est, à un changement conforme, solution de l'équation précédente. De ce résultat nous déduisons, par réduction dimensionnelle, un théorème d'approximation dans le cas des équations Vortex de Bradlow ainsi que leurs généralisations aux équations couplées Vortex.
|
Page generated in 0.0732 seconds