• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 2
  • Tagged with
  • 19
  • 19
  • 10
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Concentration de genre et laminarité

De Thélin, Henry 11 December 2003 (has links) (PDF)
Dans cette thèse, on s'intéresse à deux problèmes. Le premier est de savoir si une limite d'une suite de courbes analytiques est une lamination dans un sens faible. On montre que cela se produit quand on a un contrôle du genre des courbes analytiques par leur aire. Le second concerne la dynamique holomorphe dans le plan projectif complexe. On cherche à voir si le genre des préimages d'une droite projective par un endomorphisme holomorphe se concentre dans des zones dynamiquement intéressantes. Pour un endomorphisme générique, on montre qu'il y a concentration de genre sur le support de la mesure de Green.
2

(a,b)-modules auto-adjoints et formes hermitiennes

Karwasz, Piotr P. 10 December 2009 (has links) (PDF)
Dans cette thèse nous présenterons un travail relatif à la théorie des (a,b)-modules. Nous nous intéresserons en particulier à trois problèmes liés à la dualité des (a,b)-modules: l'existence de formes hermitiennes, la symétrie des suites de Jordan-Hölder et la relation avec les "higher residue pairings" de K. Saito. Dans la première partie on étudie les équivalents des concepts de conjugué, adjoint et de forme hermitienne dans le contexte des (a,b)-modules. Dans notre analyse des formes hermitiennes nous sont amenés à définir la notion de (a,b)-module indécomposable et à montrer l'analogue du théorème de Krull-Schmidt dans la théorie des modules sur un anneau commutatif. On montre par la suite l'existence de formes ou bien hermitiennes ou anti-hermitiennes sur les modules réguliers indécomposables auto-adjoints et on donne un exemple non trivial de rang 4 admettant uniquement une forme anti-hermitienne. Suit une étude des suites de Jordan-Hölder de (a,b)-modules auto-adjoints. L'intérêt se porte en particulier sur les suites de Jordan-Hölder dites elles aussi auto-adjointes et on en montre l'existence, pour tout (a,b)-module régulier auto-adjoint. En guise de conclusion on applique les résultats obtenus aux (a,b)-modules associés à une hypersurface à singularité isolée, c'est-à-dire au complété formel de son module de Brieskorn. On montre que le symétrisé de l'isomorphisme avec l'adjoint donné par R. Belgrade satisfait aux axiomes donnés par K. Saito dans la présentation de ses "higher residue pairings".
3

Self-adjoint (a,b)-modules and hermitian forms / (a,b)modules auto-adjoints et formes hermitiennes

Karwasz, Piotr Przemyslaw 10 December 2009 (has links)
Dans cette thèse nous présenterons un travail relatif à la théorie des (a,b)-modules. Nous nous intéresserons en particulier à trois problèmes liés à la dualité des (a,b)-modules: l'existence de formes hermitiennes, la symétrie des suites de Jordan-Hölder et la relation avec les "higher residue pairings" de K. Saito. Dans la première partie on étudie les équivalents des concepts de conjugué, adjoint et de forme hermitienne dans le contexte des (a,b)-modules. Dans notre analyse des formes hermitiennes nous sont amenés à définir la notion de (a,b)-module indécomposable et à montrer l'analogue du théorème de Krull-Schmidt dans la théorie des modules sur un anneau commutatif. On montre par la suite l'existence de formes ou bien hermitiennes ou anti-hermitiennes sur les modules réguliers indécomposables auto-adjoints et on donne un exemple non trivial de rang 4 admettant uniquement une forme anti-hermitienne. Suit une étude des suites de Jordan-Hölder de (a,b)-modules auto-adjoints. L'intérêt se porte en particulier sur les suites de Jordan-Hölder dites elles aussi auto-adjointes et on en montre l'existence, pour tout (a,b)-module régulier auto-adjoint. En guise de conclusion on applique les résultats obtenus aux (a,b)-modules associés à une hypersurface à singularité isolée, c'est-à-dire au complété formel de son module de Brieskorn. On montre que le symétrisé de l'isomorphisme avec l'adjoint donné par R. Belgrade satisfait aux axiomes donnés par K. Saito dans la présentation de ses "higher residue pairings" / In this thesis we present a work regarding the theory of (a,b)-modules. We are particularly interested in three problems related to the duality of (a,b)-modules: the existence of hermitian forms, the symmetry of Jordan-Hölder composition series and the relation with the "higher residue pairings" of K. Saito. In the first part we study the concepts of conjugate, adjoint and hermitian form in the theory of (a,b)-modules. Our analysis of hermitian forms brings us to the proof of the analogue of the Krull-Schmidt theorem in the theory of modules over a commutative ring. We prove afterwards the existence of either a hermitian or an anti-hermitian form on regular indecomposable self-adjoint (a,b)-modules and we give a non trivial rank 4 example of module that admits only an anti-hermitian form. Follows a study of the Jordan-Hölder composition series of self-adjoint (a,b)-modules. We are in particular interested in a kind of composition series also called self-ajoint, whose existence we prove for every regular self-adjoint (a,b)-module. In the last part the results obtained are applied to (a,b)-modules associated to a hyper-surface with an isolated singularity, i.e. to the formal completion of the Brieskorn module. We show that a symmetrized form of the isomorphism with the adjoint given by R. Belgrade satisfies the axioms given by Saito for his "higher residue pairings"
4

On flux vacua, SU(n)-structures and generalised complex geometry / Sur des vides à flux, des SU(n)-structures et de la géométrie complexe généralisée

Prins, Daniël 25 September 2015 (has links)
Pour connecter la théorie des cordes à la physique observable, il est essentiel de comprendre des vides supersymmétriques à flux non triviaux. Dans cette thèse, ils sont étudiés en deux cadres mathématiques : les SU(n)-structures et la géométrie complexe généralisée. Les variétés équipées de SU(n)-structures sont des généralisations de variétés de Calabi-Yau. La géométrie complexe généralisée est un cadre géométrique qui regroupe les géométries complexe et symplectique. On donne des classes de vide à flux de supergravité de type II et de théorie-M sur des variétés équipées de SU(4)-structures. Des vides explicites sont donnés sur l'espace de Stenzel, un Calabi-Yau non-compact. Ensuite, sur cette variété, des familles de SU(4)-structures sont construites. À l'aide de celles-ci, on trouve des vides à flux sur des variétés non-symplectiques. Il est démontré que les conditions permettant une supersymétrie à d = 2, N = (2,0) de type IIB peut être reformulées dans le langage de la géométrie complexe généralisée, partiellement interprétables en termes de conditions d'intégrabilité de structures presque complexes généralisées. Enfin, la théorie de type II euclidienne est examinée sur des variétés équipées de SU(5)-structures, donnant des équations généralisées qui sont nécessaires mais pas suffisantes pour satisfaire les équations de supersymétrie. Des classes de solutions explicites sont également donnés / Understanding supersymmetric flux vacua is essential in order to connect string theory to observable physics. In this thesis, flux vacua are studied by making use of two mathematical frameworks: SU(n)-structures and generalised complex geometry. Manifolds with $SU(n)$ structure are generalisations of Calabi-Yau manifolds. Generalised complex geometry is a geometrical framework that simultaneously generalises complex and symplectic geometry. Classes of flux vacua of type II supergravity and M-theory are given on manifolds with SU(4) structure. The N = (1,1) type IIA vacua uplift to N=1 M-theory vacua, with four-flux that need not be (2,2) and primitive. Explicit vacua are given on Stenzel space, a non-compact Calabi Yau. These are then generalised by constructing families of non-CY SU(4)-structures to find vacua on non-symplectic SU(4)-deformed Stenzel spaces. It is shown that the supersymmetry conditions for N = (2,0) type IIB can be rephrased in the language of generalised complex geometry, partially in terms of integrability conditions of generalised almost complex structures. This rephrasing for d=2 goes beyond the calibration equations, in contrast to d=4,6 where the calibration equations are equivalent to supersymmetry. Finally, Euclidean type II theory is examined on SU(5)-structure manifolds, where generalised equations are found which are necessary but not sufficient to satisfy the supersymmetry equations. Explicit classes of solutions are provided here as well. Contact with Lorentzian physics can be made by uplifting such solutions to d=1, N = 1 M-theory
5

Discontinuous Galerkin Method for Propagation of Acoustical Shock Waves in Complex Geometry / Une Méthode de type Galerkin discontinu pour la propagation des ondes de choc acoustiques en géométrie complexe

Tripathi, Bharat 30 September 2015 (has links)
Un nouveau code de simulation numérique pour la propagation des ondes de choc acoustiques dans des géométries complexes a été développé. Le point de départ a été la méthode de Galerkin discontinu qui utilise des maillages non structurés (ici des éléments triangulaires), particulièrement adaptés aux géométries complexes. Cependant, cette discrétisation conduit à l'apparition d'oscillation de Gibbs. Pour pallier ce problème, nous avons choisi d'introduire de la viscosité artificielle au voisinage des chocs. Cela a nécessité le développement de trois outils originaux : (i) un nouveau détecteur de choc sensible aux ondes de chocs acoustiques sur des maillages non structurés, (ii) un nouveau terme de viscosité artificielle dans les équations de l'acoustique non linéaire défini élément par élément et (iii) un nouveau terme permettant de régler le niveau de viscosité locale à partir du raidissement des fronts d'onde. Le code de calcul a été utilisé pour étudier deux configurations différentes. La première concerne la réflexion d'ondes de choc acoustiques sur des surfaces rigides. Différents régimes de réflexion ont alors été observés allant, de la réflexion classique de Snell Descartes jusqu'à celui dit de réflexion faible de Von Neumann. La deuxième configuration était consacrée à la focalisation d'ondes de choc acoustiques produites par un transducteur à haute intensité (comme ceux utilisés en HIFU). Un soin particulier a été pris pour étudier le calcul de l'intensité et pour étudier l'interaction entre les ondes de choc et des obstacles placés dans la région du foyer. / A new numerical solver for the propagation of acoustical shock waves in complex geometry has been developed. This is done starting from the discontinuous Galerkin method. This method is based on unstructured mesh (triangular elements here), and so, naturally it is well-adapted for complex geometries. Nevertheless, the discretization induces Gibbs oscillations. To manage this problem, we choose to introduce some artificial viscosity only in the vicinity of the shocks. This necessitates the development of three original tools. First of all, a new shock sensor for unstructured mesh sensitive to acoustical shock waves has been designed. It senses where the local artificial viscosity has to be introduced thanks to a reformulation of a new element centred smooth artificial viscosity term in the equations. Finally, the amount of viscosity is computed by the introduction of an original notion of gradient factor linked to the steepening of the waveform. The numerical solver has been used to investigate two different physical situations. The first one is the nonlinear reflection of acoustical shock waves on rigid surfaces. Different regimes of reflection have been observed ranging from the linear Snell Descartes reflection to the weak von Neumann case. The second configuration deals with the focusing of shock waves produced by high intensity transducers (like in HIFU). Special attention has been given to the careful computation of intensity and to the interaction between the shock waves and obstacles in the region of the focus.
6

Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann.

Borot, Gaetan 23 June 2011 (has links) (PDF)
La géométrie complexe est un outil puissant pour étudier les systèmes intégrables classiques, la physique statistique sur réseau aléatoire, les problèmes de matrices aléatoires, la théorie topologique des cordes, ...Tous ces problèmes ont en commun la présence de relations, appelées équations de boucle ou contraintes de Virasoro. Dans le cas le plus simple, leur solution complète a été trouvée récemment, et se formule naturellement en termes de géométrie différentielle sur une surface de Riemann : la "courbe spectrale", qui dépend du problème. Cette thèse est une contribution au développement de ces techniques et de leurs applications.Pour commencer, nous abordons les questions de développement asymptotique à tous les ordres lorsque N tend vers l'infini, des intégrales N-dimensionnelles venant de la théorie des matrices aléatoires de taille N par N, ou plus généralement des gaz de Coulomb. Nous expliquons comment établir, dans les modèles de matrice beta et dans un régime à une coupure, le développement asymptotique à tous les ordres en puissances de N. Nous appliquons ces résultats à l'étude des grandes déviations du maximum des valeurs propres dans les modèles beta, et en déduisons de façon heuristique des informations sur l'asymptotique à tous les ordres de la loi de Tracy-Widom beta, pour tout beta positif. Ensuite, nous examinons le lien entre intégrabilité et équations de boucle. En corolaire, nous pouvons démontrer l'heuristique précédente concernant l'asymptotique de la loi de Tracy-Widom pour les matrices hermitiennes.Nous terminons avec la résolution de problèmes combinatoires en toute topologie. En théorie topologique des cordes, une conjecture de Bouchard, Klemm, Mariño et Pasquetti affirme que des séries génératrices bien choisies d'invariants de Gromov-Witten dans les espaces de Calabi-Yau toriques, sont solution d'équations de boucle. Nous l'avons démontré dans le cas le plus simple, où ces invariants coïncident avec les nombres de Hurwitz simples. Nous expliquons les progrès récents vers la conjecture générale, en relation avec nos travaux. En physique statistique sur réseau aléatoire, nous avons résolu le modèle O(n) trivalent sur réseau aléatoire introduit par Kostov, et expliquons la démarche à suivre pour résoudre des modèles plus généraux.Tous ces travaux soulignent l'importance de certaines "intégrales de matrices généralisées" pour les applications futures. Nous indiquons quelques éléments appelant à une théorie générale, encore basée sur des "équations de boucles", pour les calculer
7

Solutions avec flux de la théorie des cordes sur tores twistés, et Géométrie Complexe Généralisée

Andriot, David 01 July 2010 (has links) (PDF)
Nous étudions des solutions avec flux de la théorie des cordes, sur un espace-temps dix-dimensionnel séparé en un espace-temps quatre-dimensionnel maximalement symétrique, et une variété interne six-dimensionnelle M, étant ici une variété résoluble (un tore twisté). Ces solutions sont intéressantes pour relier la théorie des cordes à une extension supersymétrique (SUSY) du modèle standard des particules, ou à des modèles cosmologiques. Pour des solutions SUSY des supergravités de type II, la présence de flux sur M aide à résoudre le problème des moduli. Une classe plus large de variétés que le simple Calabi-Yau peut alors être considérée pour M, et une caractérisation générale est donnée en terme de Géométrie Complexe Généralisée: M doit être un Calabi-Yau Généralisé (GCY). Il a été montré qu'une sous-classe de variétés résolubles sont des GCY, donc nous allons chercher des solutions sur de telles M. Pour y parvenir, nous utilisons une méthode de résolution algorithmique. Nous étudions ensuite un certain type de solutions: celles qui admettent une structure SU(2) intermédiaire. Par la suite, nous considérons le twist, une transformation qui relie des solutions sur le tore à d'autres sur variétés résolubles. En déterminant des contraintes sur le twist pour générer des solutions, nous parvenons à relier des solutions connues, et nous en trouvons une nouvelle. Nous l'utilisons également pour relier des solutions avec flux de la corde hétérotique. Nous considérons finalement des solutions de de Sitter dix-dimensionnelles. Plusieurs problèmes, dont la brisure de la SUSY, rendent la recherche de telles solutions difficile. Nous proposons un ansatz pour des sources brisant la SUSY qui aide à surmonter ces difficultés. Nous donnons alors une solution explicite sur variété résoluble, et discutons partiellement sa stabilité quatre-dimensionnelle.
8

Analyse radiative des photobioréacteurs

Dauchet, Jérémi 07 December 2012 (has links) (PDF)
L'ingénierie de la photosynthèse est une voie prometteuse en vue de produire à la fois des vecteurs énergétiques et des molécules plateformes pour palier la raréfaction des ressources fossiles. Le défi à relever est de taille car il faut réussir à mettre au point des procédés solaires de production de biomasse à constante de temps courte (quelques jours), là où une centaine de millions d'années a été nécessaire à la formation du pétrole. Cet objectif pourrait être atteint en cultivant des micro-organismes photosynthétiques dans des photobioréacteurs dont les performances cinétiques en surface et en volume seraient optimales. Une telle optimisation nécessite avant tout une analyse fine des transferts radiatifs au sein du procédé. L'analyse radiative des photobioréacteurs qui est ici proposée s'ouvre sur la détermination des propriétés d'absorption et de diffusion des suspensions de micro-organismes photosynthétiques, à partir de leurs caractéristiques morphologiques, métaboliques et structurales. Une chaîne de modélisation est construite, mise en oeuvre et validée expérimentalement pour des micro-organismes de formes simples ; à terme, la démarche développée pourra directement être étendue à des formes plus complexes. Puis, l'analyse du transfert radiatif en diffusion multiple est introduite et illustrée par différentes approximations qui apparaissent pertinentes pour une conceptualisation des photobioréacteurs, menant ainsi à la construction d'un intuitif nécessaire à leur optimisation. Enfin, la méthode de Monte Carlo est mise en oeuvre afin de résoudre rigoureusement la diffusion multiple en géométries complexes (géométries qui découlent d'une conception optimisée du procédé) et afin de calculer les performances cinétiques à l'échelle du photobioréacteur. Ce dernier calcul utilise une avancée méthodologique qui permet de traiter facilement le couplage non-linéaire du transfert radiatif à la cinétique locale de la photosynthèse (et qui laisse entrevoir de nombreuses autres applications dans d'autres domaines de la physique du transport). Ces outils de simulation mettent à profit les développements les plus récents autour de la méthode de Monte Carlo, tant sur le plan informatique (grâce à une implémentation dans l'environnement de développement EDStar) que sur le plan algorithmique : formulation intégrale, algorithmes à zéro-variance, calcul de sensibilités (le calcul des sensibilités aux paramètres géométriques est ici abordé d'une manière originale qui permet de simplifier significativement sa mise en oeuvre, pour un ensemble de configurations académiques testées). Les perspectives de ce travail seront d'utiliser les outils d'analyse développés durant cette thèse afin d'alimenter une réflexion sur l'intensification des photobioréacteurs, et d'étendre la démarche proposée à l'étude des systèmes photoréactifs dans leur ensemble.
9

Espaces twistoriels et structures complexes exotiques

Deschamps, Guillaume 15 November 2005 (has links) (PDF)
Dans cette thèse, nous utilisons la théorie des espaces twistoriels afin de construire des structures complexes non standards (en un sens bien précis) sur des produits de 4-variétés réelles avec la sphère de dimension deux. Pour cela nous explicitons l'ensemble des surfaces complexes dont le fibré twistoriel est topologiquement trivial. Dans un deuxième temps nous déterminons parmi ces surfaces celles qui peuvent être munies d'une métrique riemannienne anti-autoduale. De ces résultats, nous déduisons une famille d'exemples simples de 4-variétés réelles parallélisables sans structure complexe. L'espace twistoriel associé à ces variétés admet une structure complexe. C'est notre première classe de 6-variétés munies d'une structure complexe non standard. Une deuxième classe d'exemple sera construite à partir de ces travaux. Enfin, et de façon indépendante, nous étudions brièvement les propriétés de connexités rationnelles des espaces twistoriels.
10

Géométrie des variétés rationnellement connexes / Geometry of rationally connected varieties

Ou, Wenhao 07 December 2015 (has links)
Dans cette thèse, on étudie plusieurs sujets sur la géométrie des variétés rationnellement connexes. Une variété complexe est dite rationnellement connexe si par deux points généraux, il passe une courbe rationnelle. Le premier sujet qu'on étudie est la base d'une fibration lagrangienne d'une variété projective irréductible symplectique de dimension quatre. On prouve qu'il y a aux plus deux possibilités pour la base. Dans la deuxième partie, on classifie certain type de variétés de Fano. Enfin, on étudie les structures des variétés rationnellement connexes singulières qui portent des pluri-formes non nulles / In this dissertation, we study several subjects on the geometry of rationally connected varieties. A complex variety is called rationally connected if for two general points, there is a rational curve passing through them. The first subject we study is the base of a Lagrangian fibration of a projective irreducible symplectic fourfold. We prove that there are at most two possibilities for the base. In the second part, we classify certain type of Fano varieties. In the end, we study the structures of singular rationally connected varieties which carry non-zero pluri-forms

Page generated in 0.0731 seconds