Spelling suggestions: "subject:"espace twistoriels"" "subject:"espace twistorial""
1 |
Aspects twistoriels des applications semi-conformesWehbe, Mohammad 23 November 2009 (has links) (PDF)
Les thèmes de cette thèse se situent dans le domaine de la géométrie conforme et l'étude des champs de particules sans masse. Elle est portée sur l'étude des morphismes harmoniques et des applications semi-conformes entre les variétés riemanniennes et semi-riemannienes avec ses aspects spinoriels.\\ La base de notre étude est la correspondance twistorielle de Penrose qui associe à chaque géodésique dans l'espace de Minkowski, un point d'une hypersurface de l'espace complexe projectif de dimension 3, ainsi, la résolution d'une équation aux dérivées partielles devient un problème (d'ordre 1) de la géométrie complexe analytique. Les deux objects qui nous permettront de généraliser des constructions connues à d'autres situations, par exemple aux espaces temps avec courbure, aux graphes finis, sont (i) une application semi-conforme, et (ii) une congruence de rayons de lumière sans cisaillement ("shear-free ray congruence" que nous abrégerons ultérieurement par SFR). En effet, une SFR correspond à une famille d'applications semi-conformes évoluant dans le temps (voir le chapitre 3), cette dernière est bien adaptée à un cadre plus général. Cette perspective nous permet d'achever partiellement notre but c'est-à-dire d'obtenir une description combinatoire des champs dans l'esprit des "spin networks" introduits par Penrose en 1971 \cite{R.PENROSE}.\\ Un aspect de mon travail est l'étude des morphismes harmoniques, définis sur un espace-temps à valeurs dans une surface, leurs relations avec les applications semi-conformes (considérées comme des champs physiques) en dimension 3 ainsi que l'évolution de celles-ci au cours du temps. D'autre part, on développe la théorie des applications semi-conformes adaptée à nos besoins. On démontre notamment l'existence des coordonnées canoniques pour de telles applications ; une loi de conservation lorsque les fibres sont de dimension $1$ ; la conservation de la semi-conformalité d'une application par rapport a une évolution naturelle ; on classifie les applications semi-conformes biharmoniques dans $R^3$ dont les fibres sont des arcs de cercles et on obtient une formule intégrale pour la representation d'une famille d'applications biharmoniques (pas nécessairement semi-conformes) plus générale. On va mettre au point un formalisme élégant pour étudier les espaces-temps à quatre dimensions, les applications semi-conformes et les morphismes harmoniques définis sur cet espace, en faisant appel à des objets appelés spineurs. Ce formalisme nous permet d'étudier l'évolution des applications semi-conformes, ainsi l'évolution d'un champ de vecteurs tangents aux feuilletages conformes de ces applications.\\ Lorsqu'on prolonge nos idées aux graphes, on étudie la notion d'applications harmoniques et semi-conformes dans les graphes, dont la définition est proposée par H.Urakawa en 1997 \cite{Ura}. On étudie les applications définies sur les graphes ainsi que leur évolution par rapport à l'équation de la chaleur (en temps discret). On définit la notion de courbure sur un graphe et on donne un analogue au théorème de Gauss-Bonnet \cite{Bonnet} dans le cas discret. Afin de développer la théorie des twisteurs sur un graphe, on introduit notre propre définition d'une fonction holomorphe sur un graphe. Par ailleurs, on introduit la notion de graphe dual twistoriel, autrement connue sous le nom de "line graph". La correspondance entre un graphe et son dual twistoriel montre des aspects tout à fait analogues au cas continu, par exemple un sommet du graphe correspond à un sous graphe complet du graphe dual, qu'on doit considérer comme la correspondance entre un point de l'espace de Minkowski et une copie de $\mathbb{C}P^1$ dans l'espace des twisteurs
|
2 |
Espaces twistoriels et structures complexes exotiquesDeschamps, Guillaume 15 November 2005 (has links) (PDF)
Dans cette thèse, nous utilisons la théorie des espaces twistoriels afin de construire des structures complexes non standards (en un sens bien précis) sur des produits de 4-variétés réelles avec la sphère de dimension deux. Pour cela nous explicitons l'ensemble des surfaces complexes dont le fibré twistoriel est topologiquement trivial. Dans un deuxième temps nous déterminons parmi ces surfaces celles qui peuvent être munies d'une métrique riemannienne anti-autoduale. De ces résultats, nous déduisons une famille d'exemples simples de 4-variétés réelles parallélisables sans structure complexe. L'espace twistoriel associé à ces variétés admet une structure complexe. C'est notre première classe de 6-variétés munies d'une structure complexe non standard. Une deuxième classe d'exemple sera construite à partir de ces travaux. Enfin, et de façon indépendante, nous étudions brièvement les propriétés de connexités rationnelles des espaces twistoriels.
|
Page generated in 0.0662 seconds