• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of PAMBE grown InGaN/GaN double-heterojunction nanorods

Tu, Yen-Jie 26 July 2006 (has links)
The goal of this thesis is to grow InGaN at different temperatures in the form of GaN/InGaN double-heterojunction nanorods. XRD is used to analyze the In composition of film. PL, £g-PL, and CL are used to study the luminescence of InGaN and GaN, and calculation of In composition. For nanorods, the TEM and EDS are the tools to study the In composition and InGaN thickness. SEM is used to study the sample morphology. The work of EL has also been done in this thesis.
2

Characterization of AlGaN HEMT structures

Lundskog, Anders January 2007 (has links)
<p>During the last decade, AlGaN High Electron Mobility Transistors (HEMTs) have been intensively studied because their fundamental electrical properties make them attractive for highpower microwave device applications. Despite much progress, AlGaN HEMTs are far from fully understood and judged by the number of published papers the understanding of advanced structures is even poorer. This work is an exploration of the electrical and structural properties of advanced HEMT structure containing AlN exclusionlayer and double heterojunctions. These small modifications had great impact on the electrical properties.</p><p>In this work, AlGaN HEMT structures grown on SiC substrates by a hot-wall MOCVD have been characterized for their properties using optical microscopy, scanning electron microscopy, transmission electron microscopy, capacitance/voltage, eddy-current resistivity, and by homebuilt epi-thickness mapping equipment.</p><p>A high electron mobility of 1700 [cm2/Vs] was achieved in an AlN exclusion-layer HEMT. A similar electron mobility of 1650 [cm2/Vs] was achieved in a combination of a double heterojunction and exclusion-layer structure. The samples had approximately the same electron mobility but with a great difference: the exclusion-layer version gave a sheet carrier density of 1.58*1013 [electrons/cm2] while the combination of double heterojunction and exclusion-layer gave 1.07*1013 [electrons/cm2]. A second 2DEG was observed in most structures, but not all, but was not stable with time.</p><p>The structures we grew during this work were also simulated using a one-dimensional Poisson-Schrödinger solver and the simulated electron densities were in fairly good agreement with the experimentally obtained. III-nitride materials, the CVD concept, and the onedimensional solver are shortly explained.</p>
3

Characterization of AlGaN HEMT structures

Lundskog, Anders January 2007 (has links)
During the last decade, AlGaN High Electron Mobility Transistors (HEMTs) have been intensively studied because their fundamental electrical properties make them attractive for highpower microwave device applications. Despite much progress, AlGaN HEMTs are far from fully understood and judged by the number of published papers the understanding of advanced structures is even poorer. This work is an exploration of the electrical and structural properties of advanced HEMT structure containing AlN exclusionlayer and double heterojunctions. These small modifications had great impact on the electrical properties. In this work, AlGaN HEMT structures grown on SiC substrates by a hot-wall MOCVD have been characterized for their properties using optical microscopy, scanning electron microscopy, transmission electron microscopy, capacitance/voltage, eddy-current resistivity, and by homebuilt epi-thickness mapping equipment. A high electron mobility of 1700 [cm2/Vs] was achieved in an AlN exclusion-layer HEMT. A similar electron mobility of 1650 [cm2/Vs] was achieved in a combination of a double heterojunction and exclusion-layer structure. The samples had approximately the same electron mobility but with a great difference: the exclusion-layer version gave a sheet carrier density of 1.58*1013 [electrons/cm2] while the combination of double heterojunction and exclusion-layer gave 1.07*1013 [electrons/cm2]. A second 2DEG was observed in most structures, but not all, but was not stable with time. The structures we grew during this work were also simulated using a one-dimensional Poisson-Schrödinger solver and the simulated electron densities were in fairly good agreement with the experimentally obtained. III-nitride materials, the CVD concept, and the onedimensional solver are shortly explained.
4

Théorie et Pratique de l'Amplificateur Distribué : Application aux Télécommunications Optiques à 100 Gbit/s / Theory and Practice of the Distributed Amplifier : Application to 100-Gb/s Optical Telecommunications

Dupuy, Jean-Yves 17 December 2015 (has links)
La théorie, la conception, l'optimisation et la caractérisation d'amplificateurs distribués en technologie TBDH InP 0,7 µm, pour les systèmes de communications optiques à 100 Gbit/s, sont présentés. Nous montrons comment l'exploitation adaptée du concept d'amplificateur distribué avec une technologie de transistors bipolaires à produit vitesse-amplitude élevé a permis la réalisation d'un driver de modulateur électro-optique fournissant une amplitude différentielle d'attaque de 6,2 et 5,9 Vpp, à 100 et 112 Gbit/s, respectivement, avec une qualité de signal élevée. Ce circuit établit ainsi le record de produit vitesse-amplitude à 660 Gbit/s.V sur tranche et 575 Gbit/s.V en module hyperfréquence. Dans le cadre du projet Européen POLYSYS, il a été associé à un laser accordable et un modulateur pour la réalisation d'un module transmetteur optoélectronique compact, démontrant des performances avançant l'état de l'art des communications optiques courtes distances à 100 Gbit/s. / The theory, design, optimisation and characterisation of distributed amplifiers in 0.7-µm InP DHBT technology, for 100-Gbit/s optical communication systems, are presented. We show how the appropriate implementation of the distributed amplifier concept in a bipolar transistors technology with high swing-speed product has enabled the realisation of an electro-optic modulator driver with 6.2- and 5.9-Vpp differential driving amplitude at 100 and 112 Gb/s, respectively, with a high signal quality. This circuit thus establishes the swing-speed product record at 660 Gb/s.V on wafer and at 575 Gb/s.V in a microwave module. In the frame of the European project POLYSYS, it has been co-packaged with a tunable laser and a modulator to realise a compact optoelectronic transmitter module, which has demonstrated performances advancing the state of the art of short reach 100-Gb/s optical communications.

Page generated in 0.0887 seconds