• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 13
  • 10
  • 7
  • 5
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 49
  • 31
  • 28
  • 25
  • 24
  • 19
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Colloidal Interactions in Aquatic Environments: Effect of Charge Heterogeneity and Charge Asymmetry

Taboada-Serrano, Patricia Larisse 21 November 2005 (has links)
The classical theory of colloids and surface science has universally been applied in modeling and calculations involving solid-liquid interfaces encountered in natural and engineered environments. However, several discrepancies between the observed behavior of charged solid-liquid interfaces and predictions by classical theory have been reported in the past decades. The hypothesis that the mean-field, pseudo-one-component approximation adopted within the framework of the classical theory is responsible for the differences observed is tested in this work via the application of modeling and experimental techniques at a molecular level. Silica and silicon nitride are selected as model charged solid surfaces, and mixtures of symmetric and asymmetric indifferent and non-indifferent electrolytes are used as liquid phases. Canonical Monte Carlo simulations (CMC) of the electrical double layer (EDL) structure of a discretely charged planar silica surface, embedded in solutions of indifferent electrolytes, reveal the presence of a size exclusion effect that is enhanced at larger values of surface charge densities. That effect translates into an unexpected behavior of the interaction forces between a charged planar surface and a spherical particle. CMC simulations of the electrostatic interactions and calculations of the EDL force between a spherical particle and a planar surface, similarly charged, reveal the presence of two attractive force components: a depletion effect almost at contact and a long-range attractive force of electrostatic origin due to ion-ion correlation effects. Those two-force components result from the consideration of discreteness of charge in the interaction of solid-liquid interfaces, and they contradict the classical theory predictions of electrostatic repulsive interaction between similarly charged surfaces. Direct interaction force measurements between a charged planar surface and a colloidal particle, performed by atomic force microscopy (AFM), reveal that, when indifferent and non-indifferent electrolytes are present in solution, surface charge modification occurs in addition to the effects on the EDL behavior reported for indifferent electrolytes. Non-uniformity and even heterogeneity of surface charge are detected due to the action of non-indifferent, asymmetric electrolytes. The phenomena observed explain the differences between the classical theory predictions and the experimental observations reported in the open literature, validating the hypothesis of this work.
32

The study of DNA dynamics at carbon electrode surface toward DNA sensors by fluorescence and electrochemical impedance spectroscopy

Li, Qin January 1900 (has links)
Master of Science / Department of Chemistry / Jun Li / This study is focused on exploring the mechanisms of DNA dynamics at carbon electrode surfaces under a strong electric field for the development of novel DNA hybridization sensors. Oligonucleotides with FAM6 attached at the distal end are covalently tethered on the carbon electrode surface. The fluorescence emission from the FAM6 is strongly quenched in close proximity to the electrode surface. The modulation to the fluorescence intensity is correlated with the reversible reorientation of the negatively charged DNA molecules under the electric field within the electric double layer. The orientation dynamics are apparently determined by the interplay of the electropotential, salt concentration, and stiffness of the DNA molecules. We have observed that dsDNAs switch with fast dynamics (in < 0.05 second) followed by relaxation at a slower rate (in > 0.1 second) when the electric field is altered by stepping the electropotential to a more positive or negative value. The DNA reorientation exhibits strong dependence on the PBS buffer concentration and electric double layer thickness. A preliminary calculation based on dipole-surface energy transfer theory indicates that the critical distance between FAM6 and glassy carbon surface is 10.95 nm. In connection with the fluorescence study, the effect of DNA hybridization on electrochemical impedance spectroscopy (EIS) has also been investigated by two methods in an attempt to develop a fast electronic detection method. First, EIS at high AC amplitude (141 mV rms) with DNA-modified glassy carbon electrodes before and after target DNA hybridization have shown notable change at high frequencies, likely related to the DNA reorientation processes. Second, reversible EIS detection of DNA hybridization has been demonstrated with patterned regular carbon nanofiber arrays at normal AC amplitude (10 mV rms). The combination of these two methods will be explored in future studies. The effects of the electric field on surface-tethered molecular beacons (MBs) have also been studied with fluorescence spectroscopy. An increase in fluorescence at negative bias is observed accompanying the opening of the MB stem, which leads to larger separation between fluorophore and quencher. At positive bias, the rehybridization of the MB stem leads to a decrease in fluorescence intensity.
33

Dynamic impedance studies of oxidation of nickel and glycerol at nickel electrodes.

Alikarami, Mohammad 29 April 2019 (has links)
This thesis uses dynamic electrochemical impedance spectroscopy (dEIS) to study how nickel undergoes electrooxidation. An electropolishing step is used to make a clean surface, and then the transformation of nickel to α-Ni(OH)2 is studied, including how a holding potential affects the double layer capacitance, surface structure and charge transfer resistance. Also, NiOOH is grown on the surface by sweeping to more positive potentials, and the activity of NiOOH toward glycerol electrooxidation is studied. It is shown that the free water content decreases on the surface (all or some portions of the surface, or possibly one or two monolayers close to the nickel surface) during the potential hold as determined by the decrease in measured capacitance. Oxidation of glycerol to glyceraldehyde is found to be the main reaction and the reaction mechanism is discussed. / Graduate / 2019-10-23
34

Development of 3D printed flexible supercapacitors : design, manufacturing, and testing

Areir, Milad January 2018 (has links)
The development of energy storage devices has represented a significant technological challenge for the past few years. Electrochemical double-layer capacitors (EDLCs), also named as supercapacitors, are a likely competitor for alternative energy storage because of their low-cost, high power density, and high fast charge/discharge rate. The recent development of EDLCs requires them to be lightweight and flexible. There are many fabrication techniques used to manufacture flexible EDLCs, and these methods can include pre-treatment to ensure more efficient penetration of activated carbon (AC) patterns onto the substrate, or those that utilise masks for the definitions of patterns on substrates. However, these methods are inconvenient for building cost-effective devices. Therefore, it was necessary to find a suitable process to reduce the steps of manufacture and to be able to print multiple materials uniformly. This research work describes the first use of a 3D printing technology to produce flexible EDLCs for energy storage. In this research work, the four essential elements for the EDLCs substrate, current collector, activated electrode, and gel electrolyte were investigated. The AC powder was milled by ball milling to optimise the paste deposition and the electrochemical performance. A flexible composite EDLC was designed and manufactured by 3D printing. The electrochemical performance of the flexible composite EDLCs was then examined. Being highly flexible is one of the critical demands for the recent development of EDLCs. Therefore, highly flexible EDLCs were designed and manufactured by only one single extrusion process. The 3D highly flexible EDLC maintains significant electrochemical performance under a mechanical bending test. To meet the power and energy requirements, the EDLCs were connected and tested in series and parallel circuits. A supercapacitor based on printed AC material displays an area specific capacitance of 1.48 F/cm2 at the scan rate of 20 mV/s. The coulombic efficiency for the flexible EDLC was found to be 59.91%, and the cycling stability was achieved to be 56% after 500 cycles. These findings indicate that 3D printing technology may be increasingly used to develop more sophisticated flexible wearable electronic devices.
35

Effect of double layer technique on hydrogen peroxide penetration and tooth whitening efficacy

Ariyakriangkai, Watcharaphong 01 May 2017 (has links)
Objectives: To measure the level of hydrogen peroxide penetration into the pulp chamber and to evaluate its whitening efficacy when the tooth is treated with an innovative double layer of potassium nitrate desensitizing agent and hydrogen peroxide whitening gel. Methods: Extracted human molar teeth (n=160) were collected. Roots were trimmed 3 mm apical to the cemento-enamel junction, the pulp was removed and a cavity prepared, leaving a standardized wall of 2 mm thickness, which retained 100 µL of acetate buffer solution. A standardized whitening area of 6 mm in diameter was established buccally by painting the rest of the tooth with gray nail varnish. The teeth were randomly assigned into four groups. Group 1: no treatment (glycerin gel, negative control); Group 2: double layer of 20 L 5% potassium nitrate (Relief ACP, Philips Oral Healthcare) and 100 L 25% hydrogen peroxide (Zoom Chairside Whitening Gel, Philips Oral Healthcare); Group 3: double layer of 40 L 5% potassium nitrate and 100 L 25% hydrogen peroxide; and Group 4: 100 L 25% hydrogen peroxide (positive control). All groups received three 45-minute sessions of in-office whitening with light activation at 3-day intervals. Hydrogen peroxide penetration was assessed spectrophotometrically using leucocrystal violet and horseradish peroxidase. Color measurements were assessed with VITA Easyshade at baseline, 1-day, and 1-month post-whitening. Tooth color change was measured per Commission Internationale de l'Eclairage methodology. One-way ANOVA with Tukey multiple comparisons adjustment was performed to compare group differences in overall tooth color change (Delta E*) and hydrogen peroxide penetration (type I error = 0.05). Results: Hydrogen peroxide penetration levels were not significantly different between Group 2 and Group 4; however, the levels were significantly higher than Group 1 and Group 3 (p< 0.0001). Groups 2, 3 and 4 showed no differences for overall tooth color change but differed significantly from the negative control group (Group 1) at 1-day and 1-month post-whitening. Conclusions: Hydrogen peroxide penetration was affected when pretreated by potassium nitrate desensitizer; however, the double layer technique did not adversely affect the whitening efficacy.
36

Effect of innovative double layer treatment on tooth color change and nitrate penetration

AlShehri, Abdullah 01 May 2016 (has links)
Objectives: Evaluate and assess the effect of an innovative double layer, single application desensitizing/whitening technique on Nitrate penetration and total color change. Methods: Specimens were prepared from extracted caries free human molars (n=160). Teeth were randomly assigned into four groups: 100μl 25% hydrogen peroxide “Philips Zoom chairside” as control group (CTRL), double layer treatment of 20μl 5% potassium nitrate “Relief ACP, Philips oral care” and 100μl 25% hydrogen peroxide (DL20), double layer treatment of 40μl 5% potassium nitrate and 100μl 25% hydrogen peroxide (DL40), and one layer treatment of 40 μl 5% potassium nitrate (PN40). Spectrophotometric color measurements (Vita EasyShade) were done at base line (T0), one day (T1), and one month (T2) following the treatment. Nitrate penetration was measured using a nitrate/nitrite assay kit. Group comparisons of tooth color difference measurements, and nitrate penetration readings were made using the Kruskal-Wallis test. Adjustment was made for pairwise treatment comparisons using the Tukey method in conjunction with an overall 0.05 level of significance. Results: 160 teeth were used. Color difference (ΔE) results at (T1) and (T2) showed no significant difference among the CTRL, DL20, DL40 groups. But there was a statistical significant difference between those groups and the single layer (PN40) group (p
37

Charged systems in bulk and at interfaces

Moreira, André Guérin January 2001 (has links)
Eine der Faustregeln der Kolloid- und Oberflächenphysik ist, dass die meisten Oberflächen geladen sind, wenn sie mit einem Lösungsmittel, normalerweise Wasser, in Kontakt treten. Dies ist zum Beispiel bei ladungsstabilisierten Kolloidalen Suspensionen der Fall, bei denen die Oberfläche der Kolloidteilchen geladen ist (gewöhnlich mit einer Ladung von mehreren Hunderttausend Elementarladungen), oder bei Monoschichten ionischer Tenside, die auf einer Luft-Wasser Grenzfläche sitzen (wobei die wasserliebenden Kopfgruppen durch die Freisetzung von Gegenionen geladen werden), sowie bei Doppelschichten, die geladene phospholipide enthalten (wie Zellmembranen). In dieser Arbeit betrachten wir einige Modellsysteme, die zwar eine vereinfachte Fassung der Realität darstellen, von denen wir aber dennoch erwarten koennen, dass wir mit ihrer Hilfe einige physikalische Eigenschaften realer geladener Systeme (Kolloide und Elektrolyte) einfangen können. / One of the rules-of-thumb of colloid and surface physics is that most surfaces are charged when in contact with a solvent, usually water. This is the case, for instance, in charge-stabilized colloidal suspensions, where the surface of the colloidal particles are charged (usually with a charge of hundreds to thousands of e, the elementary charge), monolayers of ionic surfactants sitting at an air-water interface (where the water-loving head groups become charged by releasing counterions), or bilayers containing charged phospholipids (as cell membranes). In this work, we look at some model-systems that, although being a simplified version of reality, are expected to capture some of the physical properties of real charged systems (colloids and electrolytes).<br /> <br /> We initially study the simple double layer, composed by a charged wall in the presence of its counterions. The charges at the wall are smeared out and the dielectric constant is the same everywhere. The Poisson-Boltzmann (PB) approach gives asymptotically exact counterion density profiles around charged objects in the weak-coupling limit of systems with low-valent counterions, surfaces with low charge density and high temperature (or small Bjerrum length). Using Monte Carlo simulations, we obtain the profiles around the charged wall and compare it with both Poisson-Boltzmann (in the low coupling limit) and the novel strong coupling (SC) theory in the opposite limit of high couplings. In the latter limit, the simulations show that the SC leads in fact to asymptotically correct density profiles. We also compare the Monte Carlo data with previously calculated corrections to the Poisson-Boltzmann theory. We also discuss in detail the methods used to perform the computer simulations.<br /> <br /> After studying the simple double layer in detail, we introduce a dielectric jump at the charged wall and investigate its effect on the counterion density distribution. As we will show, the Poisson-Boltzmann description of the double layer remains a good approximation at low coupling values, while the strong coupling theory is shown to lead to the correct density profiles close to the wall (and at all couplings). For very large couplings, only systems where the difference between the dielectric constants of the wall and of the solvent is small are shown to be well described by SC.<br /> <br /> Another experimentally relevant modification to the simple double layer is to make the charges at the plane discrete.<br /> The counterions are still assumed to be point-like, but we constraint the distance of approach between ions in the plane and counterions to a minimum distance D. The ratio between D and the distance between neighboring ions in the plane is, as we will see, one of the important quantities in determining the influence of the discrete nature of the charges at the wall over the density profiles. Another parameter that plays an important role, as in the previous case, is the coupling as we will demonstrate, systems with higher coupling are more subject to discretization effects than systems with low coupling parameter.<br /> <br /> After studying the isolated double layer, we look at the interaction between two double layers. The system is composed by two equally charged walls at distance d, with the counterions confined between them. The charge at the walls is smeared out and the dielectric constant is the same everywhere. Using Monte-Carlo simulations we obtain the inter-plate pressure in the global parameter space, and the pressure is shown to be negative (attraction) at certain conditions. The simulations also show that the equilibrium plate separation (where the pressure changes from attractive to repulsive) exhibits a novel unbinding transition. We compare the Monte Carlo results with the strong-coupling theory, which is shown to describe well the bound states of systems with moderate and high couplings. The regime where the two walls are very close to each other is also shown to be well described by the SC theory.<br /> <br /> Finally, Using a field-theoretic approach, we derive the exact low-density ("virial") expansion of a binary mixture of positively and negatively charged hard spheres (two-component hard-core plasma, TCPHC). The free energy obtained is valid for systems where the diameters d_+ and d_- and the charge valences q_+ and q_- of positive and negative ions are unconstrained, i.e., the same expression can be used to treat dilute salt solutions (where typically d_+ ~ d_- and q_+ ~ q_-) as well as colloidal suspensions (where the difference in size and valence between macroions and counterions can be very large). We also discuss some applications of our results.
38

Ferroelectric Thin Films for the Manipulation of Interfacial Forces in Aqueous Environments

Ferris, Robert Joseph January 2013 (has links)
<p>Ferroelectric thin films (FETFs) offer a promising new platform for advancing liquid-phase interfacial sensing devices. FETFs are capable of expressing surface charge densities that are an order of magnitude higher than those of traditional charged surfaces in liquid environments (e.g., common oxides, self-assembled monolayers, or electrets). Furthermore, the switchable polarization state of FETFs enables patterning of charge-heterogeneous surfaces whose charge patterns persist over a range of environmental conditions. Integration of FETFs into liquid-phase interfacial sensing devices, however, requires the fabrication of films with nanometer-scale surface roughness, high remnant polarization values, and interfacial stability during prolonged exposure. The objectives of my research were to i) fabricate ferroelectric ultra-smooth lead zirconium titanate (US-PZT) thin films with nanometer-scale surface roughness, ii) establish the interfacial stability of these films after prolonged exposure to aqueous environments, iii) measure the interfacial forces as a function of film polarization and ionic strength, iv) calculate the surface potential of the US-PZT surface using electric double layer (EDL) theory, and v) demonstrate the guided deposition of charged colloidal particles onto locally polarized US-PZT thin films from solution. </p><p>I demonstrate the use of ferroelectric US-PZT thin films to manipulate EDL interaction forces in aqueous environments. My work conclusively shows that the polarization state of US-PZT controls EDL formation and can be used to induce the guided deposition of charged colloidal particles in solution. </p><p>I present a robust fabrication scheme for making ferroelectric US-PZT thin films from a sol-gel precursor. By optimizing critical thermal processing steps I am able to minimize the in-plane stress of the film and reliably produce US-PZT thin films on the wafer-scale with mean surface roughness values of only 2.4 nm over a 25 &#956;m2 area. I then establish US-PZT film stability in water by measuring changes in film topography, crystallinity, surface chemistry, and electrical properties as a function of exposure duration. My results show that fabrication of crack-free US-PZT thin film is critical for long-term film fidelity in aqueous environments. Furthermore, I found no change in film topography or bulk composition with increasing exposure duration. Prolonged exposure to aqueous environments, however, gradually oxidizes the surface of the US-PZT wich results in a decrease in film resistivity and polarization saturation. Next, I used colloidal probe force microscopy (CPFM) to measure the EDL interaction force as a function of separation distance between polarized US-PZT thin films and a clean borosilicate probe. CPFM measurements were performed on oppositely polarized US-PZT thin films, which expressed either a positive or negative surface charge, and over a range of ionic strengths. The inner-Helmholtz plane (IHP) potential of the US-PZT was determined by fitting the CPFM force-separation data to number of EDL models, including; an analytical EDL model using a constant potential boundary condition with a Stern layer, a charge regulation EDL model, and a numerical EDL model using the non-linear Poisson-Boltzmann equation. Each model provides good agreement with the experimentally measured and predict high IHP surface potential for the polarized US-PZT thin films in solution. Finally, I demonstrate the use of polarized US-PZT to induce the guided deposition of positively or negatively charged colloidal particles from aqueous environments. I explore the effects of ionic strength, particle size, surface roughness, and pH on particle deposition. </p><p>Overall, this work demonstrates, for the first time, that FETFs can be used as a platform to manipulate colloidal particles in aqueous environments. The experimental results demonstrate that the surface charge of the FETF is reduced by charge shielding and perform similarly to traditional, charged surfaces in aqueous environments.</p> / Dissertation
39

Fluid Coke Derived Activated Carbon as Electrode Material for Electrochemical double Layer Capacitor

Hu, Chijuan 24 February 2009 (has links)
An electrochemical double-layer capacitor (EDLC) is a potential buffer for current power and energy supply. In this work, activated carbon derived from fluid coke as a brand new electrode material was studied due to its high specific surface area (SSA) and large portion of mesopores. A suitable electrode material formula, current collector, and cell configuration were investigated to fabricate a testable system and ensure the reproducibility of measurements. Cyclic voltammetry (CV) and constant current charge/discharge (CD) techniques were used to characterize the performance of the electrode material, as well as to study its fundamental behaviour. A new procedure was established for quantifying the capacitance (Cc) of EDLC from CV which isolates the effect of internal resistance on the measured capacitance (CM). The specific capacitance of single electrode made of activated carbon (~1900 m2/g) with approximately 80% mesopores and macropores was able to reach 180 F/g at scan rate of 0.5mV/s.
40

Fluid Coke Derived Activated Carbon as Electrode Material for Electrochemical double Layer Capacitor

Hu, Chijuan 24 February 2009 (has links)
An electrochemical double-layer capacitor (EDLC) is a potential buffer for current power and energy supply. In this work, activated carbon derived from fluid coke as a brand new electrode material was studied due to its high specific surface area (SSA) and large portion of mesopores. A suitable electrode material formula, current collector, and cell configuration were investigated to fabricate a testable system and ensure the reproducibility of measurements. Cyclic voltammetry (CV) and constant current charge/discharge (CD) techniques were used to characterize the performance of the electrode material, as well as to study its fundamental behaviour. A new procedure was established for quantifying the capacitance (Cc) of EDLC from CV which isolates the effect of internal resistance on the measured capacitance (CM). The specific capacitance of single electrode made of activated carbon (~1900 m2/g) with approximately 80% mesopores and macropores was able to reach 180 F/g at scan rate of 0.5mV/s.

Page generated in 0.0421 seconds