Spelling suggestions: "subject:"double nanohardness"" "subject:"bouble nanohardness""
1 |
Double-nanohole optical trapping: fabrication and experimental methodsLalitha Ravindranath, Adarsh 29 August 2019 (has links)
Arthur Ashkin's Nobel Prize-winning single-beam gradient force optical tweezers have revolutionized research in many fields of science. The invention has enabled various atomic and single molecular studies, proving to be an essential tool for observing and understanding nature at the nanoscale. This thesis showcases the uniqueness of single-beam gradient force traps and the advances necessary to overcome the limitations inherent in conventional techniques of optical trapping. With decreasing particle sizes, the power required for a stable trap increases and could potentially damage a particle. This is a significant limitation for studying biomolecules using conventional optical traps. Plasmonic nanoaperture optical trapping using double-nanohole apertures is introduced as a solution to overcoming these limitations. Achievements in double-nanohole optical trapping made possible by the pioneering work of Gordon et. al are highlighted as well. This thesis focuses on the advances in nanoaperture fabrication methods and improvements to experimental techniques adopted in single molecular optical trapping studies. The technique of colloidal lithography is discussed as a cost-effective high-throughput alternative method for nanofabrication. The limitation in using this technique for producing double-nanohole apertures with feature sizes essential for optical trapping is analyzed. Improvements to enable tuning of aperture diameter and cusp separation is one of the main achievements of the work detailed in this thesis. Furthermore, the thesis explains the modified fabrication process tailor-made for designing double-nanohole apertures optimized for optical trapping. Transmission characterization of various apertures fabricated using colloidal lithography is carried out experimentally and estimated by computational electrodynamics simulations using the finite-difference time-domain (FDTD) method. Optical trapping with double-nanohole apertures fabricated using colloidal lithography is demonstrated with distinct results revealing trapping of a single polystyrene molecule, a rubisco enzyme and a bovine serum albumin (BSA) protein. / Graduate
|
2 |
Characterization of single proteins using double nanohole optical tweezersHacohen, Noa 28 May 2018 (has links)
Proteomic studies at the single molecular level could provide better understanding of the protein’s behaviour and the effects of its interactions with other biomolecules. This could
have an impact on drug development methods, disease diagnosis, and targeted therapy.
Aperture assisted optical trapping is a proven technique for isolating single proteins in solution without the use of tethers or labels, and without denaturing them. Thus enabling studies of protein-protein interactions, protein-small molecule interactions, and protein-DNA interactions.
In this work, double nanohole (DNH) optical tweezers were used to analyze the protein composition of heterogeneous mixtures. The trapped proteins were grouped by molecular
mass based on two metrics: standard deviation of the trapping laser intensity fluctuations, and the time constant of the autocorrelation function of these fluctuations.
The quantitative analysis is demonstrated first for two separate standard-size proteins, then for a mixed solution of both. Finally, the approach is applied to real unprocessed egg white solution. The results correspond well with the known protein composition of egg white found in the literature. The DNH optical tweezers’ ability to distinguish proteins in unpurified heterogeneous mixtures, can progress this technique to the next level, allowing for single biomolecular studies of unprocessed physiological solutions like blood, urine, or saliva. / Graduate
|
3 |
Robust microfluidic integration for shallow channel aperture optical tweezerRajashekara, Yashaswini 09 September 2016 (has links)
The main objective of this thesis is to present a simple and robust hands-on technology for the fabrication of a microfluidic chip in a laboratory. The purpose of this new technology is to replace the existing PDMS based microfluidic chip used for optical trapping of diverse single nano particles. It also lists the different fabrication methods attempted and the successful integration of this chip to the optical trap system which is used to study binding at the single molecular level.
Microfluidics is a quickly growing field which deals with manipulating the fluids in channels whose dimensions are few tens of micrometers. Its potential has a major impact on fields like chemical analysis and synthesis techniques, biological analysis and separation techniques, and optics and information technology. One of the main application of these microfluidic chips is in optofluidics, which is the emerging field of integrated photonics with fluidics. This provides freedom to both fields and permits the realization of optical and fluidic property. It requires small volumes of fluids and connections and eventually performs better than conventional methods of robotic fluid handling.
Here, the microfluidic chip is targeted for optical trapping with double nano-hole aperture to trap a single protein. The double nanoholes integrated with this microfluidic chip show that stable trapping can be achieved below flow rates of few μL/min. This has provided many possibilities of co-trapping of proteins and study their interactions. / Graduate
|
Page generated in 0.0516 seconds