• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selection of smoothing parameters with application in causal inference

Häggström, Jenny January 2011 (has links)
This thesis is a contribution to the research area concerned with selection of smoothing parameters in the framework of nonparametric and semiparametric regression. Selection of smoothing parameters is one of the most important issues in this framework and the choice can heavily influence subsequent results. A nonparametric or semiparametric approach is often desirable when large datasets are available since this allow us to make fewer and weaker assumptions as opposed to what is needed in a parametric approach. In the first paper we consider smoothing parameter selection in nonparametric regression when the purpose is to accurately predict future or unobserved data. We study the use of accumulated prediction errors and make comparisons to leave-one-out cross-validation which is widely used by practitioners. In the second paper a general semiparametric additive model is considered and the focus is on selection of smoothing parameters when optimal estimation of some specific parameter is of interest. We introduce a double smoothing estimator of a mean squared error and propose to select smoothing parameters by minimizing this estimator. Our approach is compared with existing methods.The third paper is concerned with the selection of smoothing parameters optimal for estimating average treatment effects defined within the potential outcome framework. For this estimation problem we propose double smoothing methods similar to the method proposed in the second paper. Theoretical properties of the proposed methods are derived and comparisons with existing methods are made by simulations.In the last paper we apply our results from the third paper by using a double smoothing method for selecting smoothing parameters when estimating average treatment effects on the treated. We estimate the effect on BMI of divorcing in middle age. Rich data on socioeconomic conditions, health and lifestyle from Swedish longitudinal registers is used.
2

Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration

Heinrich, André 27 March 2013 (has links) (PDF)
The main contribution of this thesis is the concept of Fenchel duality with a focus on its application in the field of machine learning problems and image restoration tasks. We formulate a general optimization problem for modeling support vector machine tasks and assign a Fenchel dual problem to it, prove weak and strong duality statements as well as necessary and sufficient optimality conditions for that primal-dual pair. In addition, several special instances of the general optimization problem are derived for different choices of loss functions for both the regression and the classifification task. The convenience of these approaches is demonstrated by numerically solving several problems. We formulate a general nonsmooth optimization problem and assign a Fenchel dual problem to it. It is shown that the optimal objective values of the primal and the dual one coincide and that the primal problem has an optimal solution under certain assumptions. The dual problem turns out to be nonsmooth in general and therefore a regularization is performed twice to obtain an approximate dual problem that can be solved efficiently via a fast gradient algorithm. We show how an approximate optimal and feasible primal solution can be constructed by means of some sequences of proximal points closely related to the dual iterates. Furthermore, we show that the solution will indeed converge to the optimal solution of the primal for arbitrarily small accuracy. Finally, the support vector regression task is obtained to arise as a particular case of the general optimization problem and the theory is specialized to this problem. We calculate several proximal points occurring when using difffferent loss functions as well as for some regularization problems applied in image restoration tasks. Numerical experiments illustrate the applicability of our approach for these types of problems.
3

Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration

Heinrich, André 21 March 2013 (has links)
The main contribution of this thesis is the concept of Fenchel duality with a focus on its application in the field of machine learning problems and image restoration tasks. We formulate a general optimization problem for modeling support vector machine tasks and assign a Fenchel dual problem to it, prove weak and strong duality statements as well as necessary and sufficient optimality conditions for that primal-dual pair. In addition, several special instances of the general optimization problem are derived for different choices of loss functions for both the regression and the classifification task. The convenience of these approaches is demonstrated by numerically solving several problems. We formulate a general nonsmooth optimization problem and assign a Fenchel dual problem to it. It is shown that the optimal objective values of the primal and the dual one coincide and that the primal problem has an optimal solution under certain assumptions. The dual problem turns out to be nonsmooth in general and therefore a regularization is performed twice to obtain an approximate dual problem that can be solved efficiently via a fast gradient algorithm. We show how an approximate optimal and feasible primal solution can be constructed by means of some sequences of proximal points closely related to the dual iterates. Furthermore, we show that the solution will indeed converge to the optimal solution of the primal for arbitrarily small accuracy. Finally, the support vector regression task is obtained to arise as a particular case of the general optimization problem and the theory is specialized to this problem. We calculate several proximal points occurring when using difffferent loss functions as well as for some regularization problems applied in image restoration tasks. Numerical experiments illustrate the applicability of our approach for these types of problems.

Page generated in 0.0757 seconds