Spelling suggestions: "subject:"downhole communications"" "subject:"downhole kommunications""
1 |
Design of a High Temperature GaN-Based Variable Gain Amplifier for Downhole CommunicationsEhteshamuddin, Mohammed 07 February 2017 (has links)
The decline of easily accessible reserves pushes the oil and gas industry to explore deeper wells, where the ambient temperature often exceeds 210 °C. The need for high temperature operation, combined with the need for real-time data logging has created a growing demand for robust, high temperature RF electronics. This thesis presents the design of an intermediate frequency (IF) variable gain amplifier (VGA) for downhole communications, which can operate up to an ambient temperature of 230 °C. The proposed VGA is designed using 0.25 μm GaN on SiC high electron mobility transistor (HEMT) technology. Measured results at 230 °C show that the VGA has a peak gain of 27dB at center frequency of 97.5 MHz, and a gain control range of 29.4 dB. At maximum gain, the input P1dB is -11.57 dBm at 230 °C (-3.63 dBm at 25 °C). Input return loss is below 19 dB, and output return loss is below 12 dB across the entire gain control range from 25 °C to 230 °C. The variation with temperature (25 °C to 230 °C) is 1 dB for maximum gain, and 4.7 dB for gain control range. The total power dissipation is 176 mW for maximum gain at 230 °C. / Master of Science / The oil and gas industry uses downhole communication systems to collect important information concerning the reservoirs such as rock properties, temperature, and pressure, and relay it back to the surface. The electronics in these communication systems have to withstand temperatures exceeding 210 °C. Current high temperature electronics are not able to handle such temperatures for extended periods of time. Advancements in semiconductor technologies allow for fabrication of semiconductors that withstand high temperatures, such as GaN (Gallium Nitride). This thesis describes the design of a VGA (variable gain amplifier), which is an essential part of a downhole communication system. The VGA is designed using GaN semiconductor technology. Measured results show that the VGA shows good performance from 25 °C to 230 °C without the use of any cooling techniques, and can thus be used to design nextgeneration robust, high speed downhole communication systems.
|
2 |
Design of a High Temperature GaN-Based VCO for Downhole CommunicationsFeng, Tianming 20 February 2017 (has links)
Decreasing reserves of natural resources drives the oil and gas industry to drill deeper and deeper to reach unexploited wells. Coupled with the demand for substantial real-time data transmission, the need for high speed electronics able to operating in harsher ambient environment is quickly on the rise. This paper presents a high temperature VCO for downhole communication system. The proposed VCO is designed and prototyped using 0.25 μm GaN on SiC RF transistor which has extremely high junction temperature capability. Measurements show that the proposed VCO can operate reliably under ambient temperature from 25 °C up to 230 °C and is tunable from 328 MHz to 353 Mhz. The measured output power is 18 dBm with ±1 dB variations over entire covered temperature and frequency range. Measured phase noise at 230 °C is from -121 dBc/Hz to -109 dBc/Hz at 100 KHz offset. / Master of Science / The oil and gas industry are drilling deeper and deeper to reach unexploited wells due to decreasing reserves of easily available natural resources. In addition, high speed electronics able to operating in harsher ambient environment is required to meet the demand for substantial realtime data transmission. This work presents a high temperature VCO for downhole communication system which can meet the requirement aforementioned. The proposed VCO is designed and prototyped to meet the harsh temperature and high speed requirement. Measurements show that, under ambient temperature from 25 °C up to 230 °C, the proposed VCO can operate reliably from 328 MHz to 353 Mhz, as required by the communication system.
|
3 |
A High Temperature Wideband Low Noise AmplifierCunningham, Michael Lawrence 27 January 2016 (has links)
As the oil industry continues to drill deeper to reach new wells, electronics are being required to operate at extreme pressures and temperatures. Coupled with substantial real-time data targets, the need for robust high speed electronics is quickly on the rise. This paper presents a high temperature wideband low noise amplifier (LNA) with zero temperature coefficient maximum available gain (ZTCMAG) biasing for a downhole communication system. The proposed LNA is designed and prototyped using 0.25μm GaN on SiC RF transistor technology, which is chosen due to the high junction temperature capability. Measurements show that the proposed LNA can operate reliably up to an ambient temperature of 230°C with a minimum noise figure (NF) of 2.0 dB, gain of 16.1 dB, and P1dB of 19.1 dBm from 230.5MHz — 285.5MHz. The maximum variation with temperature from 25°C to 230°C is 1.53dB for NF and 0.65dB for gain. / Master of Science
|
4 |
A High Temperature RF Front-End of a Transceiver for High Speed Downhole CommunicationsSalem, Jebreel Mohamed Muftah 11 October 2017 (has links)
Electronics are normally designed to operate at temperatures less than 125 oC. For high temperature applications, the use of those normal electronics becomes challenging and sometimes impractical. Conventionally, many industries tried to push the maximum operating temperature of electronics by either using passive/active cooling systems or tolerating degraded performance. Recently, there has been a demand for more robust electronics that can operate at higher temperature without sacrificing the performance or the use of any weighty, power hungry, complex cooling systems.
One of the major industries that need electronics operating at high temperature is the oil and gas industry. Electronics have been used within the field in many areas, such as well logging downhole telemetry systems, power networks, sensors, and actuators. In the past, the industry has managed to use the existing electronics at temperatures up to 150 oC. However, declining reserves of easily accessible natural resources have motivated the oil and gas industry to drill deeper. The main challenge at deep wells for downhole electronics is the high temperatures as the pressures are handled mechanically. The temperature in deep basins can exceed 210 oC. In addition, existing well logging telemetry systems achieve low data transmission rates of less than 2.0 Mbps at depth of 7.0 Km which do not meet the growing demand for higher data rates due to higher resolution sensors, faster logging speeds, and additional tools available for a single wireline cable. The main issues limiting the speed of the systems are the bandwidth of multi-conductor copper cable and the low speed communication system connecting the tools with the telemetry modem.
The next generation of the well logging telemetry system replaces the multi-conductor wireline between the surface and the downhole with an optical fiber cable and uses a coaxial cable to connect tools with the optical node in downhole to meet the growing needs for higher data rates. However, the downhole communication system between the tools and the optical modulator remains the bottleneck for the system. The downhole system is required to provide full duplex and simultaneous communications between multiple downhole tools and the surface with high data rates and able to operate reliably at temperatures up to 230 oC.
In this dissertation, a downhole communication system based on radio frequency (RF) transmission is investigated. The major contributions of our research lie in five areas. First, we proposed and designed a downhole communication system that employs RF systems to provide high speed communications between the downhole tools and the surface. The system supports up to six tools and utilizes frequency division multiple access to provide full duplex and simultaneous communications between downhole tools and the surface data acquisition system. The system achieves 20 Mbps per tool for uplink and 6 Mbps per tool for downlink with bit error rate (BER) less than 10-6. Second, a RF front-end of transceiver operating at ambient temperatures up to 230 oC is designed and prototyped using Gallium Nitride (GaN) high electron mobility transistor (HEMT) devices. Measurement results of the transceiver's front end are reported in this dissertation. To our knowledge, this is the first RF transceiver that operates at this high temperature. Third, current-voltage and S-parameters characterizations of the GaN HEMT at ambient temperatures of 250 oC are conducted. An analytic model that accurately predicts the behavior of the drain-source resistor (RDS) of the GaN transistor at temperature up to 250 oC is developed based on these characterizations. The model is verified by the analysis and the performance of the resistive mixer. Fourth, a passive upconversion mixer operating at temperatures of 250 oC is designed and prototyped. The designed mixer has conversion loss (CL) of 6.5 dB at 25 oC under local oscillator (LO) power of 2.5 dBm and less than 0.75 dB CL variation at 250 oC under the optimum biasing condition. Fifth, an active downconversion mixer operating at temperatures up to 250 oC is designed and prototyped. The proposed mixer adopts a common source topology for a reliable thermal connection to the transistor source plate. The designed active mixer has conversion gain (CG) of 12 dB at 25 oC under LO power of 2.5 dBm and less than 3.0 dB CG variation at 250 oC. Finally, a novel high temperature negative adaptive bias voltage circuit for a GaN based RF block is proposed. The proposed design comprises an oscillator, voltage doubler, and temperature dependent bias controller. The voltage offset and temperature coefficient of the generated bias voltage can be adjusted by the bias controller to match the optimum biasing voltage required by a RF building block. The bias controller is designed using a Silicon Carbide (SiC) bipolar junction transistor. / PHD / A downhole communication system provides two-way communications for multiple tools located in a deep oil well. The main challenge for the downhole communication system as the oil wells get deeper is the high ambient temperatures as the pressures can be handled mechanically. The temperature in deep basins can exceed 210 °C. Cooling and heat extraction techniques with fans are impractical for downhole systems due to increased weight, power, and system complexity. In addition, the current downhole communication systems have low transmission speed, which do not meet the growing demand for higher data rates due to higher resolution sensors, faster logging speeds, and additional tools available for a single wireline cable.
In this work, a downhole communication system based on radio frequency (RF) transmission is designed. The system supports up to six tools and provides high speed simultaneous communications which enable more sensors to be integrated in each tool. A high temperature RF front-end of the transceiver which will be connected to each tool is designed and prototyped using Gallium Nitride (GaN) semiconductor technology. GaN technology is selected due its ability to operate at harsh environment. The measurement results show a reliable performance for the RF front-end at temperatures up to 230 °C. To our knowledge, this is the first RF front-end that operates at 230 °C reported in the open literature.
The proposed downhole communication system will enhance the speed and reliability of the oil and gas operations. This also will enable the industry to observe the wells and act in real time which in turns save operation time and bring a significant cost reduction in oil and gas operations. Most importantly, the proposed system will enable the industry to explore deeper untapped wells and add more features to the tools which were not possible before due to speed and high temperature limitations.
|
Page generated in 0.1163 seconds