Spelling suggestions: "subject:"drainage."" "subject:"frainage.""
411 |
The effect of expanded shale lightweight aggregates on the hydraulic drainage properties of claysMechleb, Ghadi 05 November 2013 (has links)
Fine grained soils, in particular clays of high plasticity, are known to have very low values of hydraulic conductivity. This low permeability causes several problems related to vegetation growth and stormwater runoff. One way to improve the permeability of clay soils is by using coarse aggregates as a fill material. Recently, Expanded Shale has been widely applied as an amendment to improve drainage properties of clayey soils. However, limited effort has been made to quantify the effect of Expanded Shale on the hydraulic conductivity or on the volume change of fine grained soils. Specifically, the field and laboratory tests required to quantify the amounts of Expanded Shale to be mixed with clays to obtain desired hydraulic conductivity values have not been conducted.
This paper presents the results of a series of laboratory fixed-wall permeameter tests conducted on naturally occurring clay deposits in the Austin area with different plasticity. The testing program comprised of clay samples with different quantities of Expanded Shale aggregates by volume, ranging between 0 and 50%, and compacted at two different compaction efforts (60% and 100% of the standard Proctor compaction effort).
The laboratory test results indicate that the hydraulic conductivity of the three soils increases by at least an order of magnitude when the Expanded Shale is mixed in quantities between 25 to 30% by volume depending on the compaction effort. Expanded Shale amended samples also showed lower swelling potential with increasing amendment quantities. Moreover, when the clay with the higher plasticity was mixed with 25% Expanded Shale, the compression and recompression ratios decreased by 25% and 15% respectively. / text
|
412 |
Transport of nanoparticles during drainage and imbibition displacements in porous mediaChung, Doo Hyun 21 November 2013 (has links)
During carbon dioxide (CO₂) sequestration, CO₂ injection suffers from viscous fingering and low sweep efficiency. In addition, the lower density of CO₂ compared to in-situ brine leads to the possibility of sequestered CO₂ rising up through the relatively permeable path in the cap rock and being emitted back out to the atmosphere. This research proposes a mechanism of CO₂-in-brine emulsion stabilization by surface-coated nanoparticles as a potential cure for these problems. This mechanism is studied in detail by conducting a series of core floods to investigate the interactions between nanoparticles and the surroundings such as fluids and rock surfaces during nanoparticle transport in sedimentary rocks. The experiments presented here use n-octane as a low-pressure analog fluid to supercritical CO₂ as they share several key characteristics. Comparisons of pressure drop and CT images from drainage displacement experiments with and without nanoparticles show that nanoparticle-stabilized emulsions were generated in-situ in highly permeable and homogeneous Boise sandstones tested in this study. Roof snap-off is proposed as the key mechanism for generating the emulsions. The imbibition experiment presents a case where Roof snap-off does not occur. The pressure drop for the control experiment and the nanoparticle experiments confirmed that without Roof snap-off nanoparticles do not affect the dynamics of the displacement except for the viscosity increase of the aqueous phase. However, it was inferred from the saturation profiles and effluent concentration history that nanoparticles were traveling faster than the aqueous phase in which they were dispersed and accumulating at the main displacement front. Inaccessible pore volume is proposed as a mechanism responsible for the accelerated transport of nanoparticles. The single-phase flow experiments demonstrate the accelerated transport of nanoparticles in porous media that was invoked to explain observations during imbibition displacement. During these experiments, tracer and nanoparticles were simultaneously injected into a porous medium and their effluent concentrations were monitored using a UV-Vis detector. The results show that nanoparticles traveled faster than the tracer in Boise and Berea sandstones studied in this research. Two-site model developed by Zhang (2012) was used to fit the data. Simulations suggested that the two-site model could replicate the overall shape of the experimental data when a slug of nanoparticle dispersion was injected, but it was not able to accurately predict the leading edge and the trailing edge of the effluent concentration history, where nanoparticles appeared before tracer due to accelerated transport. To account for the enhanced transport of nanoparticles, a modified two-site model with an acceleration factor, E, is proposed. The resulting fit matched the experimental data better than the original two-site model. / text
|
413 |
A generalized flow rate model for primary production and an analysis of gravity drainage through numerical simulationVitter, Cameron Artigues 07 April 2015 (has links)
The age of “easy” oil has steadily declined through the years as many conventional land-based fields have been depleted to residual levels. Novel technologies, however, have reawakened old fields, allowing incremental oil to be added to their recoverable oil in place (ROIP). Underground Gravity Drainage (UGD), an example of one of these technologies, combines improved horizontal and deviated drilling technologies with the longstanding concept of gravity drainage. In this work, a better understanding of gravity drainage has been gained through (1) development of a numerical, three-dimensional, three-phase reservoir simulator (UT-EMPRES), (2) development of a universal, semi-empirical model of production rates through primary depletion, and (3) analysis of the important aspects of gravity drainage through simulation. UT-EMPRES is a new three-phase, finite-difference reservoir simulator, which utilizes a simple, easy-to-use Microsoft Excel interface to access MATLAB-programmed simulation code. This simulator produces nearly identical results to other well-established simulators, including UTCHEM and CMG. UT-EMPRES has some unique features, allows for easy post-processing in MATLAB, and has been utilized extensively in the other two areas of this thesis. The generalized flow rate model (GFRM) is a semi-empirical equation that is used to forecast the dynamic primary production rate of a reservoir with an arbitrary number of wells all operating at the same constant pressure condition. The model is an extension of the classic tank model, which is inherently a single flowing phase development. With the ability to make a priori predictions of production figures, users can screen various prospect assets on the basis of economic potential through optimization routines on the GFRM. Gravity drainage and its approximation through numerical simulation are analyzed. A sensitivity study was conducted on three-phase gravity drainage, leading to the conclusion that small changes in vertical permeability and portions of the relative permeability-saturation relationships can greatly affect production rates. Finally, two-phase (oil and air) and regions of three-phase (water, oil, air) flow simulations were found to exhibit exponential decline in phase production rates, which may enable the GFRM to be applicable to UGD-type processes. / text
|
414 |
Trialling small-scale passive systems for treatment of acidmine drainage: A case study from Bellvue Mine, WestCoast, New Zealand.West, Rae Ann January 2014 (has links)
Bellvue Mine is an abandoned coal mine on the West Coast of the South Island which discharges severe acid mine drainage (AMD) into the nearby Cannel Creek. This site is unique in that iron is in a ferrous or reduced form at the mouth of the mine, but due to the slope of the site, the AMD becomes aerated and subsequently the iron oxidises into ferric form as it moves downstream. Research was conducted to examine the geochemistry of the AMD at the site and investigate the performance of selected passive treatment systems at this site, with a view to informing decisions for passive treatment at other comparable mines on the West Coast. A range of small-scale trial passive remediation systems were installed, including an anoxic limestone drain (ALD), a bioreactor, and two mussel shell reactors. Results from the trials showed that the mussel shell reactor treating oxidised water was the most effective at reducing the concentration of dissolved metals in the AMD. A range of factors including hydraulic residence time, geochemistry of the Bellvue Mine discharge, and unexpected equipment issues all contributed to the results of the trials, and are important factors that need to be taken into consideration when designing a full-scale system for this site and others.
|
415 |
A hydrodynamic diffusion wave model for stormwater runoff on highway surfaces at superelevation transitionsJeong, Jaehak, 1974- 29 August 2008 (has links)
Superelevation transition is often used to help balance the centrifugal forces on vehicles through curved roadway sections. Such transitions have regions with near-zero cross-slope as the pavement cross-section rotates from a negative to positive grade. For drainage of roadway surfaces, regions with near-zero slope constitute 'irregular topography'. This condition promotes extended stormwater runoff drainage path lengths and may result in excessive splash from vehicles and hydroplaning. A critical concern is the effect of longitudinal slope on stormwater drainage through superelevation transition. The overall goal of this study is to provide design guidance on longitudinal slope at superelevation transitions through application of a numerical simulation model of highway drainage. Sheet flow on urban pavement surfaces is very shallow, typically measuring a depth less than one centimeter. For modeling of such flow conditions, any small discontinuity or over-simplification of the surface geometry may result in failure in the flow computation. The kinematic wave approximation to the full Saint-Venant equations is often used in many surface and subsurface water models due to its simplicity in application. However, this model fails when backwater effects, ponding, or flow on reverse slope occurs in the local scale. Furthermore, due to the complexity in the surface geometry and the existence of drainage systems, the kinematic wave model is not sufficient for modeling urban stormwater runoff. On the other hand, the full dynamic wave (DW) model usually requires more computational effort. The long computation time of DW model often compromises the accuracy of the model, making the model practically inefficient. In this study, an algorithm was developed to properly represent the irregularly shaped roadway surfaces near superelevation transition areas with unevenly spaced curvilinear grids based on the geometry profile provided by a roadway design software package such as MicroStation CAD. With this accurately defined geometric representation, a nonlinear hydrodynamic diffusion wave model for hydraulic analysis developed in this research estimates the flow depth and runoff volume on the pavement surfaces. The model computes the flow responses for rising hydrographs using a preconditioned general Conjugate Gradient method. Kinematic boundary conditions developed for the open boundaries at the upstream and downstream boundaries compute the boundary values explicitly at each time step. The result of a numerical experiment shows that the spread and concentration of sheet flow is closely related to the transition in cross slope, longitudinal slope, rainfall intensity, and the width of the road. The characteristics of the sheet flow on superelevation transition areas are analyzed to find the optimal longitudinal slope. It is found that the longitudinal slope in the range of 0.3%-0.4% is the optimal slope at superelevation transition areas which minimizes the depth of stormwater runoff. An example application of the model on a rural highway in Texas is also presented. It is found that a significant amount of stormwater may exist on traffic lanes at the superelevation transitions tested. The predicted ponding depth exceeds the minimum value for potential hydroplaning, and the pattern of the flow concentration may cause differential drag forces on traffic vehicles. / text
|
416 |
Avery Drive area drainage improvementSheng, Christopher Tong 03 October 2011 (has links)
The area of study is the Avery Drive drainage area. The objective of these projects is to alleviate frequent flooding at the Avery Drive neighborhoods. RC&A designed two options for improving the Avery Drive drainage area. Option one increases the capacity of the existing sewer system, and option two constructs a new storm drain system along Simon Street while keeping the existing system in place. Although both options offer preliminary solutions for alleviating flooding, the designs are unviable due to the lack of data that was available for the study. The following research will prove that RC&A fulfilled its contractual obligation of practicing due diligence by recommending further investigation to obtain valuable data for a complete and successful final design, rather than providing a solid recommendation based on existing data. / text
|
417 |
A study of the public relations strategy of the Drainage Services Department, Hong Kong李鉅標, Lee, Kui-biu, Robin. January 2003 (has links)
published_or_final_version / Public Administration / Master / Master of Public Administration
|
418 |
An analysis on the closing down of the sewage services trading fund inDrainage Services DepartmentLam, Wai-chuen, Eddie., 林偉全. January 1999 (has links)
published_or_final_version / Public Administration / Master / Master of Public Administration
|
419 |
Defining Efficient Water Resource Management in the Weber Drainage Basin, UtahWilde, Keith D. 01 January 1976 (has links)
The Weber Basin Water Conservancy District is a state institution, but its primary function is collecting money for the U.S. Bureau of reclamation, to pay for the Weber Basin Project. Different classes of water users pay markedly different fees for identical Project services. More than half of the water developed by the Project is not used consumptively, yet supply facilities continue to be built in the Basin because they are less expensive to their owners than prices charged for the underused capacity of the Project. Paradoxically, some Basin residents are bitterly resentful to both the District and the Bureau, claiming that water rights formerly their own have, by means of the Project, been stolen. That is, both the enemies and the proponents of the Project adhere to the Western orthodoxy that water is scarce and drought imminent.
The principal difficulty of this investigation lay in identifying the nature of the problem, for the situation seemed full of contradictions. Consequently, the primary contribution of the dissertation is an explanation of Basin circumstances that accounts for arresting observations without inconsistency or contradiction. The most important hypotheses are, therefore, empirical, or historical and institutional. Economics, according to Richard T. Ely and Frank H. Knight, is a set of principles concerning what ought to be, not empirical descriptions of what is. Consistent with that perspective, once the nature of the problem is clear, applications of economic principles is a prescriptive judgement of how the problem may be resolved.
The most important empirical hypotheses are as follows: Water is not scarce in the Weber Basin; neither are storage and conveyance facilities. All are abundant, even redundant. Nevertheless in combination with certain institutional arrangements and sustained propaganda campaign, this very abundance contributes to persistence of the attitude that water is scarce. Redundant facilities thereby encourage even more unneeded development. What appears on first examination to be a case of misallocated water resources by discriminatory prices, turns out to be a problem of distributing the burden of paying for excessive, unwanted public works. Water itself is a free good in the Basin. Actual distribution of the repayment burden is partly ideological and partly pragmatic; partly a political choice and partly a bureaucratic decision; partly a manifestation of agrarian policy and partly what the traffic will bear.
If water is free, it is not an economic good, and not a subject for economic analysis. The Basin has an ample water supply, but water may nevertheless be locally and periodically scarce. The water problem is therefore one of conveyance and timing. Control of timing requires storage. Conveyance requires energy, as well as aqueducts. In the Weber Basin, conveyance energy may be either the controlled flow of falling (mountain) water, or electrically powered pumps tapping abundant groundwater reservoirs. The water development problem is therefore, an issue of alternative capital facilities for the control and delivery of water (itself abundant). Efficient resource allocation in water development is consequently relevant at the investment level; it is not a matter of pricing water. In this case, the major investment decisions have already been implemented, and the problem is one of evaluating distribution of the repayment burden.
The relevant economics literature is principles of equitable taxation, and of public utilities' pricing. Application to the basin situation produces a conclusion that present arrangements are as equitable as could be devised. Further redundant investment (inefficient use of resources), however, could be avoided if the State Engineer's Office took a harder line on requests to drill new wells. The information provided in this work could be the basis for making such a program popularly acceptable.
|
420 |
The use of waste mussel shell in sulfate-reducing bioreactors treating mine-influenced watersUster, Benjamin January 2015 (has links)
Mining-Influenced Water (MIW) poses major environmental issues in New Zealand and worldwide due to a legacy of unmitigated mining activities. As conventional MIW treatment technologies can be very costly in terms of chemical and energy inputs, cheaper and environmentally-friendly alternative remediation strategies have been developed. These so-called passive treatment technologies include a range of engineered systems relying on biogeochemical processes able to mitigate the acidity and to immobilize the metals in MIW.
The present research, built on previous work conducted at the University of Canterbury, investigated the use of waste materials in mesocosm lab-scale sulfate-reducing bioreactors (SRBR) to treat actual mining-influenced water (MIW) sourced at an active coal mine in New Zealand. Specifically, this study investigated using waste mussel shells as an alkaline amendment (instead of the more conventional material limestone), with organic waste materials such as wood byproducts and compost in complex substrate mixtures in upward-flow SRBR. The influence of hydraulic retention times of approximately 3 and 10 days (HRT; i.e. the contact time between the MIW and the substrate mixtures in the SRBR) on the treatment performances was also evaluated.
Overall, each system successfully treated the MIW (e.g. increased the pH > 6 and removed >78 % of the metals, except Mn) during the first 5-month treatment period, while during the second 5-month period, the treatment systems containing limestone and/or operating at a short HRT started to show signs of decreased efficiency. Generally, the system containing mussel shell and operating at a long HRT was constantly the most efficient system. Over the whole 41-week period of treatment, key metal removal efficiencies ranged between 97.6 and 99.7 % (Al), 83.9 and 95.2 % (Fe), and 9.2 and 38.8 % (Mn). Sulfate removal, in terms of moles of sulfate removed per cubic meter of substrate per day, was on average below the design values of 0.3 mol/m3/d, and ranged between 0.03 and 0.55 mol/m3/d (median values were 0.26 to 0.3 mol/m3/d during the first 5-month period but dropped to 0.094 to 0.1 mol/m3/d during the second 5-month treatment period).
The SRBR containing mussel shell instead of limestone resulted in significantly higher alkalinity generation (between 32 to 85 % higher) and higher metal removals (between 0.6 % higher for Al and 14 % higher for Ni). These results were mainly attributed to the unique mineralogy of the mussel shell which comprises of aragonite with traces of calcite, while limestone comprises of pure calcite with traces of quartz. The statistical analyses showed that the sulfate reduction was not significantly affected by the alkalinity source.
Similarly, systems operating at a longer HRT (10 days instead of 3 days) showed better treatment performances than systems operating at a short HRT in terms of alkalinity generation (44 to 62% higher), metal removal (between 0.5 % higher for Al to 15 % higher for Ni, and between 17 to 23 % higher for Mn), and sulfate reduction (50 to 77 % higher). Overall, the systems operation on a longer HRT were dominated by a more reduced environment facilitating the precipitation of metal sulfides, while the reactors running on a shorter HRT were constantly maintained out of equilibrium by the continuous addition of fresh MIW.
Chemical and mineralogical analyses performed on the spent substrates suggested that the metals were removed through precipitation as, and adsorption onto, metal sulfides (Fe, Zn, Ni, Cu), (oxy)hydroxides (Al, Fe, Zn), and carbonates (Mn, Zn). Mn, a metal known to be harder to remove from solution was likely removed through the precipitation of rhodochrosite (MnCO3) and via adsorption onto the organic matter. These results generally corroborated the results obtained using the geochemical modeling PHREEQC.
Overall, this study showed that mussel shells are not only a sustainable and effective alternative to mined limestone, but their use in SRBR would also result in a better treatment of MIW. Additionally, even though an increase in HRT resulted in a better contaminant removal, a HRT of approximately 3 days was sufficient to remove about 80% of all metals (except Mn). Therefore, the difficult choice of an optimal HRT must balance the need to meet a specific effluent quality while keeping the treatment time reasonably short, and an intermediate retention time of approximately 6 days could be optimal.
|
Page generated in 0.0638 seconds